:
پیشرفتهای اخیر در فناوری نانو مربوط به تواناییهای جدید در زمینه اندازهگیری و كنترل ساختارهای منفرد در مقیاس نانو میباشد.
در علوم مختلف مهندسی، موضوع اندازهگیری و تعیین مشخصات از اهمیت كلیدی برخوردار است به طوری كه ویژگیهای فیزیكی و شیمیایی مواد، به مواد اولیهی مورد استفاده و همچنین ریزساختار یا ساختار میكروسكوپی به دست آمده از فرایند ساخت بستگی دارد.
به عنوان مثال برای شناسایی مواد ، بدیهی است كه نوع و مقدار ناخالصیها، شكل و توزیع اندازه ذرات، ساختار بلورین و مانند آن در ماهیت و مرغوبیت محصول اثر دارند.
در ضمن برای مطالعه ریزساختارها، نیاز بیشتری به ابزارهای شناسایی و آنالیز وجود دارد. در ریزساختار یا ساختار میكروسكوپی مواد، باید نوع فازها، شكل، اندازه، مقدار و توزیع آنها را بررسی كرد. در ادامه با توجه به اهمیت دستگاهها و روشهای اندازهگیری و تعیین مشخصات به طبقهبندی این روشها پرداخته میشود.
1-1- روش های میکروسکوپی
با استفاده از روشهای میكروسكوپی تصاویری با بزرگنمایی بسیار بالا از ماده بدست میآید. قدرت تفكیك تصاویر میكروسكوپی با توجه به كمترین قدرت تمركز اشعه محدود میشود. به عنوان مثال با استفاده از میكروسكوپهای نوری با قدرت تفكیكی در حدود 1 میكرومتر و با استفاده از میكروسكوپهای الكترونی، و یونی با قدرت تفكیك بالا در حدود یك آنگسترم قابل دسترسی است. این روشها شامل TEM،AFM ،SEM ،STM میباشد[6،5].
2-1- روش های براساس پراش
پراش یكی از خصوصیات تابش الكترومغناطیسی میباشد كه باعث میشود تابش الكترومغناطیس در حین عبور از یك روزنه و یا لبه منحرف شود. با كاهش ابعاد روزنه به سمت طول موج اشعه الكترومغناطیسی اثرات پراش اشعه بیشتر خواهد شد. با استفاده از پراش اشعه ایكس، الكترونها و یا نوترونها و اثر برخورد آنها با ماده میتوان ابعاد كریستالی مواد را اندازهگیری كرد. الكترونها و نوترونها نیز خواص موجی دارند كه طول موج آن به انرژی آنها بستگی دارد. علاوه بر این هر كدام از این روشها خصوصیات متفاوتی دارند. مثلا عمق نفوذ این سه روش در ماده به ترتیب زیر میباشد. نوترون از اشعه ایكس بیشتر و اشعه ایكس از الكترون بیشتر میباشد.
3-1- روش های طیف سنجی
استفاده از جذب، نشر و یا پراش امواج الكترومغناطیس توسط اتمها و یا مولكولها را طیف سنجی گویند. برخورد یك تابش با ماده میتواند منجر به تغییر جهت تابش و یا تغییر در سطوح انرژی اتمها و یا مولكولها شود، انتقال از تراز بالای انرژی به تراز پایینتر، نشر و انتقال از تراز پایین انرژی به تراز بالاتر، جذب نامیده میشود. تغییر جهت تابش در اثر برخورد با ماده نیز منجر به پراش تابش میشود.
طیف سنجی جرمی:
روشهای طیف سنجی جرمی از تفاوت نسبت جرم به بار اتمها و یا مولكولها استفاده میکنند. عملكرد عمومی یك طیف سنجی جرمی بصورت زیر است:
1 – تولید یونهای گازی
2 – جداسازی یونها براساس نسبت جرم به بار
3 – اندازهگیری مقدار یونها با نسبت جرم به بار ثابت
4-1- روش های جداسازی
در نمونههایی كه حاوی چند جز نا شناخته باشد، ابتدا باید از هم جدا شده و سپس اجزا توسط روشهای آنالیز مشخص میشود. جداسازی براساس تفاوت در خصوصیات فیزیكی و شیمیایی صورت میگیرد. به عنوان مثال حالت ماده، چگالی و اندازه از خصوصیات فیزیكی مورد استفاده و حلالیت نقطه جوش و فشار بخار از خواص شیمیایی مورد استفاده در جداسازی میباشد.
از روشهای شناسایی مواد، تحت عنوان آنالیز ریزساختاری آنالیز سطح و آنالیز حرارتی معرفی شدهاند. منظور از آنالیز یا شناسایی ریزساختاری، همان شناسایی میكروسكوپی است. در این حالت، شكل، اندازه و توزیع فازها بررسی میشود. باید توجه داشت كه در ویژگیهای یك نمونه، نه تنها نوع فازها، بلكه شكل، اندازه و توزیع آنها نیز اثر گذار هستند. در اصل، سطح مواد جامد به خاطر ارتباط با محیط اطراف، وضعیت شیمیایی یكسانی با حجم نمونه ندارد. از طرف دیگر در بسیاری از كاربردها، سطح نمونه نقش مهمتری را بازی میکند. به عنوان مثال، در كاتالیزورها یا آسترهای ضد خوردگی، واكنش سطح با عوامل محیطی، تعیین كننده است. نكته قابل توجه دیگر، آن است كه تركیب شیمیایی در سطح با بدنه تفاوت دارد. بنابراین با تعیین آنالیز شیمیایی كل نمونه، نمیتوان در مورد آنالیز سطح قضاوت كرد آنالیز حرارتی در شناسایی فازی عمل می كنند این روشها، اطلاعات بسیار مفیدی از رفتار حرارتی مواد در اختیار پژوهشگران میگذارند. از این رو، نه تنها برای شناسایی آنها، بلكه در طراحیهای مهندسی نیز استفاده میشوند. و نیز به ویژه در رشته سرامیك كاربرد دارد و اهمیت آن به دلیل ساخت مواد جدید، روز افزون است.
5-1- سوزن ها
بسته به مد مورد استفادهی AFM و خاصیت مورد اندازهگیری از سوزنهای مختلفی استفاده میشود. زمانی كه فرایند اندازهگیری مستلزم وارد كردن نیروهایی فوق العاده زیاد از جانب سوزن به سطح باشد از سوزنهای الماسی استفاده میشود. همچنین سوزنهای با روكشهای الماس گونه برای این منظور مورد استفاده قرار میگیرند. به عنوان مثال در ایجاد نانو خراشها با نیروهایی به بزرگی N سرو كار داریم (این در حالیست كه در مد تماسی نیروی وارد بر سطح N میباشد) و باید از این نوع سوزنها استفاده كنیم. پارامترهای هندسی سوزن كه نوع كارایی سوزن و میزان دقت نتایج بدست آمده را تعیین میکنند عبارتند از شكل، بلندی، نازكی (زاویه راس هرم فرضی منطبق بر نواحی نوك)، تیز ی (شعاع دایره فرضی منطبق بر نوك).
سوزنهای T شكل برای نقشهبرداری و آشكارسازی فرورفتگیهای موجود در بخشهای دیواره مانند سطح نمونه به كار میروند. این در حالی است كه سوزنهای نوك تیز این قابلیت را ندارند.
[1]Tunneling Electron Microscopic
[2]Atomic Force Microscopic
[3]Scanning Electron Microscopic
[4]Scanning Tunneling Microscopic
:
آئروژلها مواد متخلخلی هستند که حفرههای نانومتری آنها در مقیاس مزو یا میکرو میباشد. چگالی پایین، تخلخل و سطح در معرض داخلی بالا از دیگر ویژگیهای این مواد میباشد.
در این پژوهش نانو کامپوزیت سیلیکا آئروژل/ نانوذرات فریت کبالت به روش سل-ژل آمادهسازی و تحت فرایند فوق بحرانی خشک شد. بدین منظور نیترات آهن( ) 9 آبه و نیترات کبالت( ) 6 آبه در حلالهایی چون متانول و آب دیونیزه حل شده و به پیشماده سیلیکا اضافه و قرار دادن این محلول بر روی همزن مغناطیسی به شکل گیری سل یکنواختی منجر شد. پس از گذشت زمان معین و انجام عمل هیدرولیز، ژل بدست آمده در دستگاه خشک کن فوق بحرانی قرار دادهشد و در نهایت گاز جایگزین مایع موجود در نمونهها گردید و آئروژل نهایی حاصل شد.
به منظور بررسی نمونههای تولید شده از نقطه نظر ساختاری، مورفولوژی و خواص مغناطیسی به تحلیل دادههای حاصل از آنالیزهای SEM، TEM، XRD ،FT-IR ،BET و VSM پرداخته شد. همانگونه که انتظار میرفت این نانو کامپوزیت ضمن حفظ ویژگیهای سیلیکا- آئروژل از جمله تخلخل بالا و چگالی پایین رفتار فرومغناطیس نانوذرات را نیز داشت.
فصل اول: مفاهیم اولیه
از اواخر قرن بیستم دانشمندان تمرکز خود را بر فناوری نوینی معطوف کردند که به عقیدهی عدهای تحولی عظیم در زندگی بشر ایجاد میکند. این فناوری نوین که در رشتههایی همچون فیزیک، شیمی و مهندسی از اهمیت زیادی برخوردار است، نانوتکنولوژی نام دارد. میتوان گفت که نانوفناوری رویکردی جدید در تمام علوم و رشتهها میباشد و این امکان را برای بشر به وجود آورده است تا با یک روش معین به مطالعهی مواد در سطح اتمی و مولکولی و به سبکهای مختلف به بازآرایی اتمها و مولکولها بپردازد.
در چند سال اخیر، چه در فیزیک تجربی و چه در فیزیک نظری، توجه قابل ملاحظهای به مطالعهی نانوساختارها با ابعاد كم شده است و از این ساختارها نه تنها برای درک مفاهیم پایهای فیزیک بلكه برای طراحی تجهیزات و وسایلی در ابعاد نانومتر استفاده شدهاست. وقتی كه ابعاد یک ماده از اندازههای بزرگ مانند متر و سانتیمتر به اندازههایی در حدود یک دهم نانومتر یا کمتر كاهش مییابد، اثرات کوانتومی را میتوان دید و این اثرات به مقدار زیاد خواص ماده را تحت الشعاع قرار میدهد. خواصی نظیر رنگ، استحکام، مقاومت، خوردگی یا ویژگیهای نوری، مغناطیسی و الکتریکی ماده از جملهی این خواص میباشند [1].
1-1- شاخه های فناوری نانو
تفاوت اصلی فناوری نانو با فناوریهای دیگر در مقیاس مواد و ساختارهایی است که در این فناوری مورد استفاده قرار میگیرند. در حقیقت اگر بخواهیم تفاوت این فناوری را با فناوریهای دیگر بیان نماییم، میتوانیم وجود عناصر پایه را به عنوان یک معیار ذکر کنیم. اولین و مهمترین عنصر پایه نانو ذره است. نانوذره یک ذرهی میکروسکوپی است که حداقل طول یک بعد آن کمتر از ١٠٠ نانومتر است و میتوانند از مواد مختلفی تشکیل شوند، مانند نانوذرات فلزی، سرامیکی و نانوبلورها که زیر مجموعهای از نانوذرات هستند [ 3و 2]. دومین عنصر پایه نانوکپسول است که قطر آن در حد نانومتر میباشد. عنصر پایهی بعدی نانولولهها هستند که خواص الکتریکی مختلفی از خود نشان میدهند و شامل نانولولههای کربنی، نیترید بور و نانولولههای آلی میباشند [4].
2-1- روش های ساخت نانوساختارها
تولید و بهینهسازی مواد بسیار ریز، اساس بسیاری از تحقیقات و فناوریهای امروزی است. دستورالعملهای مختلفی در خصوص تولید ذرات بسیار ریز در شرایط تعلیق[1] وجود دارد ولی در خصوص انتشار و تشریح دقیق فرآیند رسوبگیری و روشهای افزایش مقیاس این فرآیندها در مقیاس تجاری محدودیت وجود دارد. برای تولید این نوع مواد بسیار ریز از پدیدههای فیزیکی یا شیمیایی یا به طور همزمان از هر دو استفاده میشود. برای تولید یک ذره با اندازه مشخص دو فرآیند اساسی وجود دارد، درهم شکستن) بالا به پایین) و دیگری ساخته شدن) پایین به بالا). معمولا روشهای پائین به بالا ضایعاتی ندارند، هر چند الزاما این مسأله صادق نیست . مراحل مختلف تولید ذرات بسیار ریز عبارت است از، مرحلهی هستهزایی اولیه و مرحلهی هستهزایی[2] و رشد خود به خودی[3]. در ادامه به طور خلاصه روشهای مختلف تولید نانوذرات را بیان میکنیم. به طور کلی روشهای تولید نانوذرات عبارتند از:
– چگالش بخار
– سنتز شیمیایی
– فرآیندهای حالت جامد (خردایشی)
– استفاده از شارهها فوق بحرانی به عنوان واسطه رشد نانوذرات فلزی
– استفاده از امواج ماكروویو و امواج مافوق صوت
– استفاده از باكتریهایی كه میتوانند نانوذرات مغناطیسی و نقرهای تولید كنند
پس از تولید نانوذرات میتوان با توجه به نوع كاربرد آنها از روشهای رایج زمینهای مثل روكشدهی یا اصلاح شیمیایی نیز استفاده كرد [7].
3-1- کاربردهای نانوساختارها
یکی از خواص نانوذرات نسبت سطح به حجم بالای این مواد است. با استفاده از این خاصیت میتوان کاتالیزورهای قدرتمندی در ابعاد نانومتری تولید نمود. این نانوکاتالیزورها بازده واکنشهای شیمیایی را به شدت افزایش داده و همچنین به میزان چشمگیری از تولید مواد زاید در واکنشها جلوگیری خواهند نمود. به کارگیری نانوذرات در تولید مواد دیگر استحکام آنها را افزایش داده و یا وزن آنها را کم
میکند. همچنین مقاومت شیمیایی و حرارتی آنها را بالا برده و واکنش آنها در برابر نور وتشعشعات دیگر را تغییر میدهد.
با استفاده از نانوذرات نسبت استحکام به وزن مواد کامپوزیتی به شدت افزایش خواهد یافت. اخیرا در ساخت شیشه ضد آفتاب از نانوذرات اکسید روی استفاده شده است. استفاده از این ماده علاوه بر افزایش کارآیی این نوع شیشهها، عمر آنها را نیز چندین برابر نمودهاست .از نانوذرات همچنین در ساخت انواع سایندهها، رنگها، لایههای محافظتی جدید و بسیار مقاوم برای شیشهها، عینکها (ضدجوش و نشکن)، کاشیها و در حفاظهای الکترومغناطیسی شیشههای اتومبیل و پنجره استفاده میشود. پوششهای ضد نوشته برای دیوارها و پوششهای سرامیکی برای افزایش استحکام سلولهای خورشیدی نیز با استفاده از نانوذرات تولید شدهاند.
وقتی اندازه ذرات به نانومتر میرسد یکی از ویژگیهایی که تحت تأثیر این کوچک شدن اندازه قرارمیگیرد تأثیرپذیری از نور و امواج الکترومغناطیسی است. با توجه به این موضوع اخیراً چسبهایی از نانوذرات تولید شدهاند که کاربردهای مهمی در صنایع الکترونیکی دارند. نانولولهها در موارد الکتریکی، مکانیکی و اپتیکی بسیار مورد توجه بودهاند. روشهای تولید نانولولهها نیز متفاوت میباشد، همانند تولید آنها بر پایه محلول و فاز بخار یا روش رشد نانولولهها در قالب که توسط مارتین[1] مطرح شد. نانولایهها در پوششهای حفاظتی با افزایش مقاومت در خوردگی و افزایش سختی در سطوح و فوتولیز و کاهش شیمیایی کاربرد دارند.
نانوذرات نیز به عنوان پیشماده یا اصلاح ساز در پدیده های فیزیکی و شیمیایی مورد توجه قرارگرفتهاند. هاروتا[2] و تامسون[3] اثبات کردند که نانوذرات فعالیت کاتالیستی وسیعی دارند، مثل تبدیل مونواکسید کربن به دی اکسید کربن، هیدروژنه کردن استیرن به اتیل بنزن و هیدروژنه کردن ترکیبات اولفیتی در فشار بالا و فعالیت کاتالیستی نانوذرات مورد استفاده در حسگرها که مثل آنتن الکترونی بین الکترود و الکترولیت ارتباط برقرار میکنند [7].
4-1- مواد نانومتخلخل
مواد نانو متخلخل دارای حفرههایی در ابعاد نانو هستند و حجم زیادی از ساختار آنها را فضای خالی تشکیل میدهد. نسبت سطح به حجم (سطح ویژه) بسیار بالا، نفوذپذیری یا تراوایی[1] زیاد، گزینشپذیری خوب و مقاومت گرمایی و صوتی از ویژگیهای مهم آنها میباشد. با توجه به ویژگیهای ساختاری، این به عنوان تبادلگر یونی[2]، جدا کننده[3]، کاتالیزور، حسگر، غشا[4] و مواد عایق استفاده میشود.
نسبت حجمی فضای خالی مادهی متخلخل به حجم كل ماده تخلخل[5] نامیده میشود. به موادی كه تخلخل آنها بین 2/0 تا 95/0 باشد نیز مواد متخلخل[6] میگویند. حفرهای كه متصل به سطح آزاد ماده است حفرهی باز[7] نام دارد كه برای صاف كردن غشا، جداسازی[8] و كاربردهای شیمیایی مثل كاتالیزور و كروماتوگرافی[9] (جداسازی مواد با استفاده از رنگ آنها) مناسب است. به حفرهای كه دور از سطح آزاد ماده است حفرهی بسته[10] میگویند كه وجود آنها تنها سبب افزایش مقاومت گرمایی و صوتی و كاهش وزن ماده شده و در كاربردهای شیمیایی سهمی ندارد. حفرهها دارای اشكال گوناگونی همچون كروی، استوانهای، شیاری، قیفی شكل و یا آرایش شش گوش[11] هستند. همچنین تخلخلها میتوانند صاف یا خمیده یا همراه با چرخش و پیچش باشند [7].
بر اساس دستهبندی که توسط آیوپاک[12] صورت گرفته است، ساختار محیط متخلخل با توجه به میانگین ابعاد حفرهها، مواد سازنده و نظم ساختار به سه گروه تقسیمبندی میشوند که در شکل 1-1 نشان داده شده است:
الف) دسته بندی بر اساس اندازهی حفره:
– میكرومتخلخل[13]: دارای حفرههایی با قطر كمتر از 2 نانومتر.
– مزومتخلخل[14]: دارای حفرههایی با قطر 2 تا 50 نانومتر.
– ماكرومتخلخل:[15] دارای حفرههایی با قطر بیش از 50 نانومتر.
بر اساس شکل و موقعیت حفرهها نسبت به یکدیگر در داخل مواد متخلخل، حفرهها به چهار دسته تقسیم میشود: حفرههای راه به راه[1]، حفرههای کور[2]، حفرههای بسته[3] و حفرههای متصل به هم[4] که در شکل (2-1) به صورت شماتیک این حفرهها را نشان داده شده است.
بر اساس تعریف مصطلح نانوفناوری، دانشمندان شیمی در عمل نانو متخلخل[1] را برای موادی كه دارای حفرههایی با قطر كمتر از 100 نانومتر هستند به كار میبرند كه ابعاد رایجی برای مواد متخلخل در كاربردهای شیمیایی است.
[1] Nanoporous
4 Closed pores
5 Inter-Connected pores
[1] Permeability
[2] Ion Exchanger
[3] Separator
[4] Membrane
[5] Porosity
[6] Porous
[7] Open Pore
[8] Filteration
[9] Chromatography
[10] Closed Pore
[11] Hexagonal
8 IUPAC
[13] Microporous
[14]Mesoporous
1 Microporous
2 Passing pores
3 Dead end pores
[1] Martin
[2] Haruta
[3] Thompson
[1] Colloidal
[2] Nucleation
[3] Spontaneous Nucleation
مدیران شرکتها به عنوان نمایندگان صاحبان سهام می بایست دائما تلاش نمایندساختارسرمایه شرکت را به گونه ای تنظیم نمایند ، که هزینه سرمایه شرکت حداقل ودرنتیجه ارزش وسودآوری شرکت حداکثرگردد. زیرا مدیران شرکتها انگیزه بیشتری دارند تا ازطریق هموارسازی سود، تصویری مطلوب ازروند سودآوری شرکت ارائه نمایند واعتباردهندگان راراضی نگه دارند . دراین تحقیق به بررسی تاٴثیرساختارسرمایه برسودآوری به تفکیک شرکتهای هموارسازوغیرهموارسازسود پرداخته می شود . با توجه به اینکه هموارسازی سود یك هدف روشن دارد وآن ایجاد جریان رشد ثابت درسود است. به طوركلی هدف آن ، كاهش تغییرات سوداست . دراین تحقیق به منظورشناسایی هموارسازی سود ازمدل ایکل استفاده می کنیم .هدف دراین مدل ، به طورمشخص هموارسازی مصنوعی سود می باشد. موضوع دیگری که ضروری است مورد تاکید قرارگیرد این است که چارچوب نظری مدل ایکل ، صرفا برای شناسایی تلاشهای موفق هموارسازی سود به کارمی رود . دراین تحقیق با معرفی مدلی تحت عنوان مدل ایکل ،اهتمام براین است رابطه ساختارسرمایه وسودآوری را به تفکیک شرکت های هموارساز وغیرهموارسازسود را بهتر تبیین کنیم.
بنابراین سئوالات زیر مطرح می شود:
1- شرکت ها چگونه اقدام به تاٴمین مالی کنند تا برسود وبازده سهامداران حداکثرتاٴثیرمثبت را بگذارند؟
2- آیا هموارسازی برنوع ، شدت وچگونگی ساختارسرمایه وسود آوری تاٴثیردارد ؟
3- مدیران، دراستفاده ازاهرم مالی با توجه به سودآوری شرکت ها چه تصمیماتی بگیرند ؟
3- پیشینه تحقیق
فرناندزوهواکیمیان (2001)،دامون ،سنبت (1998) ،درزمینه ساختارسرمایه تحقیقاتی را انجام دادند وترکیب بهینه رامعرفی کرده اند . یکی ازیافته های مهم این تحقیقات این بود که نسبت بازده حقوق صاحبان سهام رابطه ی مثبت ومعنی داری با بدهی ها دارد،یعنی هرچه میزان بدهی ها افزایش می یابد ، نسبت بازده حقوق صاحبان سهام افزایش می یابد[8، 7 ،6]. یافته های آبر(2005)،این بود که بین نسبت بدهی کوتاه مدت ونسبت بازده حقوق صاحبان رابطه ای مثبت وجود دارد ، به هرحال یک ارتباط منفی بین نسبت بدهی بلندمدت با نسبت بازده حقوق صاحبان سهام وجود دارد واینکه ارتباط معنی داری بین نسبت بدهی به جمع کل دارائیها وبازده حقوق صاحبان سهام وجود دارد[4]. داس ودیگران (2009)، به این نتیجه رسیدند که اگر مالکان شرکتی بخواهند سودهای گزارش شده شرکت آنها هموارباشد،می توانند پاداشی را برای انجام این کاربه مدیرانشان اختصاص دهند[5] . دلاوری (1377)،تاٴثیر روشهای مالی را برروی نسبت بازدهی حقوق صاحبان سهام شرکت ها در بورس اوراق بهادارتهران ، در یک دوره ی 5 ساله مورد بررسی قرار داد و به این نتیجه رسید که اگر چه نسبت جمع دارایی ها به حقوق صاحبان سهام برای گروه شرکتهایی که وام اخذ کرده اند درمقایسه با گروه شرکت هایی که افزایش سرمایه داده اند ، ازنظرآماری اختلا ف معنی داری وجود دارد ، اما نسبت بازدهی حقوق صاحبان سهام و نیزنسبت فروش به جمع دارایی ها ونسبت سود خالص به فروش در دو گروه شرکت ها اختلا ف معنی داری با یکدیگر ندارند. به عبارت اهرم مالی تاٴثیری برسود آوری شرکت های بورس نداشته است[2]. بدری (1378) ،طی مطالعه ای نشان داد هموارسازی درشركت های پذیرفته شده دربورس اوراق بهادارتهران صورت می گیرد . مطا بق نتایج این تحقیق، نسبت سودآوری یك انگیزه مؤثرجهت هموارسازی سود بوده و شركت های تولیدی پذیرفته شده در بورس كه ازنسبت پایین ترسودآوری برخورداربوده اند ، بیشتردرگیرهموارسازی سود شده اند [1]. نوروش ودیگران (1386)، دربررسی ویژگی شرکت های هموارساز به این نتیجه رسیدند که شرکت های هموارسازسود سن بیشتر عملکرد ضعیف ترونسبت بدهی بالاتری نسبت به شرکت های غیرهموارسازسود دارند[3].
1-1-فلزات سنگین و سمیت آنها…………………………………………………………………………1
1-2-كادمیم و سمیت آن در گیاهان عالی……………………………………………………………2
1-3-سیلیكون و نقش آن در تنش فلزات سنگین ………………………………………………5
1-4-روش های اعمال تنش كادمیم در آزمایشگاه ……………………………………………. 6 1-5- گوجه فرنگی…………………………………………………………………………………………….7
1-5-1- مشخصات گیاه شناسی و شرایط رشد …………………………………………… 7
1- 5-2- اهمیت اقتصادی……………………………………………………………………………8
1-5-3- اهداف پروژه ……………………………………………………………………………….9
فصل دوم: مروری بر پژوهشها
2-1- جذب و انتقال كادمیم و تأثیر آن بر جذب و انتقال عناصر غذایی در گیاه…….11
2-2- تجمع و سمیت زدایی كادمیم در گیاه ………………………………………………………13
2-3- تأثیر كادمیم بر مراحل متابولیكی گیاه …………………………………………………….14
2-4- تأثیر كادمیم بر فعالیت سیستم های آنتی اكسیدانت و مقدار
پراكسیداسیون چربی……………………………………………………………………………………….16
2-5-تأثیر كادمیم بر تراكم پرولین……………………………………………………………………17
2-6- برطرف كردن كادمیم خاك با استفاده از گیاهان متراكم كننده …………………18
2-7- نقش سیلیكون در كاهش تنش فلزات سنگین ………………………………………..19
فصل سوم: مواد و روشها
3-1- تهیه بذر…………………………………………………………………………………………………22
3-2- مواد لازم برای تنش کادمیم وتیمارسیلیکون …………………………………………..22
3-3-تهیه محیط کشت برای تنش کادمیم………………………………………………………..22
3-3 -1-روش كار………………………………………………………………………………………23
3-4- اندازه گیری وزن تر ساقه و ریشه گیاهچه گوجه فرنگی …………………………..23
3-5- اندازه گیری مقدار كلروفیل و کاروتنوئید در برگ گیاهچه گوجه فرنگی……23
3-5-1- مواد و محلول های مورد نیاز ………………………………………………………..24
3-5-2- روش آزمایش………………………………………………………………………………..24
3-6- اندازه گیری مقدار آنتوسیانین در برگ گیاهچه های گوجه فرنگی……………..24
3-6-1-مواد و محلولهای مورد نیاز……………………………………………………………….24
3- 6-2- روش آزمایش……………………………………………………………………………..25
3-7- اندازه گیری مقدار اسیدآمینه پرولین در برگ گیاهچه گوجه فرنگی ………25
3-7-1- مواد و محلول های مورد نیاز …………………………………………………………25
3-7-2- تهیه محلول نین هیدرین……………………………………………………………25
3-7-3- روش آزمایش……………………………………………………………………………25
3-8- اندازه گیری مقدار اكسایش لیپیدهای غشایی برگ وریشه ……………………..26
3-8-1- مواد ومحلولهای مورد نیاز……………………………………………………………..26
3-8-2- روش كار ……………………………………………………………………………………26
3-9-اندازه گیری مقدار پتانسیل آنتی اکسیدانی در برگ گیاهچه
گوجه فرنگی………………………………………………………………………………………………….27
3-9-1-مواد ومحلولهای مورد نیاز …………………………………………………………. 27
3-9-2-تهیه عصاره متانولی ……………………………………………………………………27
3-9-3-تهیه محلول استاندارد………………………………………………………………..28
3-9-4-روش کار…………………………………………………………………………………….28
3-10- اندازه گیری مقدار کادمیم برگ و ریشه در گیاهچه گوجه فرنگی…………….29
3-10-1-مواد ومحلول های مورد نیاز………………………………………………………29
3-10-2-روش کار………………………………………………………………………………….30
3-11- تجزیه وتحلیل آماری داده ها ………………………………………………………………31
فصل چهارم: نتایج
4-1- اثر كادمیم و غلظت های مختلف سیلیكون بر میزان كلروفیل ……………….33
4-2- اثر كادمیم و غلظت های مختلف سیلیكون بر میزان كاروتنوئید…………….34
4-3-اثر كادمیم و غلظت های مختلف سیلیكون بر میزان
پراكسیداسیون چربی برگ……………………………………………………………………………35
4-4-اثر كادمیم و غلظت های مختلف سیلیكون بر میزان
پراكسیداسیون چربی ریشه……………………………………………………………………………36
4-5- اثر كادمیم و غلظت های مختلف سیلیكون بر میزان پرولین برگ……………37
4-6- اثر كادمیم و غلظت های مختلف سیلیكون بر غلظت كادمیم
ریشه و اندام هوایی………………………………………………………………………………………..38
4-7- اثر كادمیم و غلظت های مختلف سیلیكون بر وزن تر اندام هوایی …………..39
4- 8-اثر كادمیم و غلظت های مختلف سیلیكون بر وزن تر ریشه……………………..40
4-9- اثر كادمیم و غلظت های مختلف سیلیكون بر میزان آنتوسیانین …………….41
4-10- اثر كادمیم و غلظت های مختلف سیلیكون بر میزان
پتانسل آنتی اکسیدانی برگ های گیاه……………………………………………………………….42
4-11-آزمایش خاک…………………………………………………………………………………………43
فصل پنجم: بحث
5-1-بررسی اثر کادمیم و غلظت های مختلف سیلیکون بر میزان
كلروفیل و كاروتنوئید برگ ها………………………………………………………………………..45
5-2- بررسی اثر کادمیم و غلظت های مختلف سیلیکون بر میزان
پراكسیداسیون چربی در برگ ها وریشه…………………………………………………………46
5-3- بررسی اثر کادمیم و غلظت های مختلف سیلیکون بر میزان
پرولین برگ ها………………………………………………………………………………………………47
5-4- بررسی اثر کادمیم و غلظت های مختلف سیلیکون بر میزان
كادمیم در ریشه و برگ ها……………………………………………………………………………..47
5-5- بررسی اثر کادمیم و غلظت های مختلف سیلیکون بر میزان
وزن تر اندام هوایی و ریشه…………………………………………………………………………..48
5-6- بررسی اثر کادمیم و غلظت های مختلف سیلیکون بر میزان
آنتوسیانین گیاه……………………………………………………………………………………..49
5-7- بررسی اثر کادمیم و غلظت های مختلف سیلیکون بر میزان
پتانسیل آنتی اکسیدانی گیاه…………………………………………………………………………………49
نتیجه گیری……………………………………………………………………………………………51
پیشنهادات پژوهشی آینده……………………………………………………………………………………52
فهرست منابع ………………………………………………………………………………………………………..53
(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است
:
لایههای نازک نیترید آلومینیوم بر روی زیرلایههای استیل 304
شرایط آزمایش: زوایای مختلف نسبت به محور آند (0، 15 و 30) در فاصله cm5 نسبت به نوک آند با استفاده از تعداد 25 شات
آنالیزها: XRD ، AFM ، SEM
در این تحقیق، لایه های نازك نیترید آلومینیوم بر روی زیرلایه های استیل 304 با استفاده از دستگاه پلاسمای كانونی پوشش داده شده است. پس از تولید لایه های نازك، نمونه ها به منظور بررسی خصوصیات لایه، به وسیله دستگاه پراش پرتو ایكس، میكروسكوپ های الكترونی روبشی و نیروی اتمی مورد مطالعه قرار گرفتند.
نتایج تحقیق نشان می دهد كه تغییر تعداد شات ها، فاصله زیرلایه ها از نوك آند و همچنین زاویه قرار گرفتن زیرلایه ها نسبت به محور آند، نقش مهمی در خصوصیات لایه های تولید شده دارند.
نمونه های بدست آمده در زوایای مختلف نسبت به محور آند (0، 15 و 30) در فاصله 5 سانتیمتر از نوک آند و با استفاده از تعداد 25 شات نشان میدهد که با افزایش زاویه از صفر به 15 و سپس 30، شاهد کاهش بلورینگی، فیلمهای لایه نشانی شده هستیم. نتایج حاصل از بررسی مورفولوژی سطح فیلمهای لایهنشانی شده در زاوایای مختلف نسبت به نحور آند توسط میکروسکوپ نیروی اتمی نشان میدهند که نمونه لایهنشانی شده در زاویه °15 دارای سطحی نسبتاً یکنواخت متشکل از دانههایی در اندازههای نسبتاً یکسان میباشد.
فصل اول: معرفی دستگاه پلاسمای کانونی
اگر چه نمی توان منکر استفاده از انرژی های تجدید ناپذیر از قبیل انرژی باد، خورشید و … شد، اما نمی توان غول صنعت را فقط با انرژی های تجدید ناپذیر سیر کرد. بعلاوه منابع اولیه انرژی های شناخته شده در روی کره زمین فقط برای پانصد سال کفایت خواهد کرد و وسایل زیست محیطی چنان دست و پای بشر را بسته است که متخصصان امر، همین پانصد سال را نیز ناشدنی می پندارند و بنابراین باید در جستجوی منبع انرژی دیگری بود.
امروزه پیشرفت روز افزون بشر سبب شده است که نیاز انسان به تأمین انرژی به حدی زیاد شود که سوخت های فسیلی دیگر نتوانند جوابگوی نیازهای صنعتی باشند. از اینرو متخصصان و دانشمندان به فکر استفاده از انرژی های هسته ای افتاده اند. فرایند شکاف هسته ای که هم اینک در راکتورهای تولید انرژی مورد استفاده قرار می گیرد به علت تولی زباله های رادیواکتیو چندان مورد پسند نیستند، در حالیکه فرایند هم جوشی هسته ای بسیار از این جهت مطلوب تر می باشد زیرا که منجر به محصولاتی می شود که مانند زباله های حاصل از شکاف هسته ای خطرناک نمی باشند. از این رو به علت پاک بودن این انرژی توجه زیادی به آن می شود.
در راستای انجام تحقیقاتی برای دستیابی به این تکنولوژی دستگاه پلاسمای کانونی ساخته شد. این دستگاه در ابتدا به عنوان منبع تولید نوترون های پر انرژی ساخته شد ولی پس از مدتی به عنوان یک دستگاه کم هزینه و با کاربردهای چندگانه مورد توجه دانشمندان و به خصوص دانشمندان کشورهای در حال توسعه قرار گرفت.
دستگاه پلاسمای کانونی در اواخر دهه 1985، اوایل دهه 1960، توسط فیزیکدانان اولی (فیلیپوف) و فیزکدانان آمریکایی (مدر) ساخته شد و به سرعت به عنوان دستگاهی کارا و جالب برای تولید پلاسما و تابش های آن مورد توجه قرار گرفت. پلاسمای کانونی (PF) از هنگام اختراعش در دهه 1960 قویترین چشمه پلاسمایی نوترون به شمار می رفت، تا اینکه با اختراع روش گرمایش توکامک با اشعه خنثی این دستگاه جای پلاسمای کانونی را به عنوان قویترین چشمه پلاسمایی نوترون گرفت. ولی ارزانی و سادگی سیستم پلاسمای کانونی باعث شده
که برای استفاده های مختلفی مورد توجه قرار گیرد. حتی آژانس بین المللی انرژی اتمی نوعی از این دستگاه ها را برای جهان سوم طراحی کرد.
دستگاه پلاسمای کانونی می تواند به عنوان منبع تولید اشعه ایکس سخت و نرم به کار رود که به علت پالسی بودن این اشعه می تواند برای عکسبرداری از وسایل سریع مانند موتور هواپیما به کار رود. از دیگر کاربردهای این دستگاه تولید الکترون و یون می باشد که فرآیند تولید آنها در بخش های بعدی توضیح داده می شود.
یون های حاصل از این دستگاه می تواند برای کاشت یون استفاده شود. البته مهمترین کاربرد دستگاه پلاسمای کانونی، تحقیقات راجع به همجوشی هسته ای در هسته های سبک از قبیل دوتریم، تریتیم، هلیم و لیتیم است.
پلاسما:
پلاسما حالت گازی شکل از ماده است که در آن بر اثر دمای زیاد، اتم های ماده یونیزه شده و گازی متشکل از الکترون ها و یون ها، تولید می شود. با تبدیل شدن یک ماده به پلاسما، خواص جدیدی در آن ظاهر می شود. بر خلاف گازهای معمولی ( که اتم خنثی دارند)، پلاسما می تواند هادی جریان الکتریکی باشد، از خود نور گسیل کند، تحت تأثیر امواج الکترومغناطیسی قرار بگیرد و رفتار جمعی از خود نشان دهد که نه تنها به شرایط موضعی بلکه به حالت پلاسما در مناطق دور نیز بستگی دارد.
پینچ (pinch):
پینچ پلاسما در حقیقت فشرده شدن پلاسما توسط میدان مغناطیسی ناشی از جریان الکتریکی می باشد. در سیستم های پلاسمای کانونی که در بخش بعد توضیح داده خواهد شد، یک جریان الکتریکی نسبتاً زیاد به هنگام تخلیه الکتریکی در داخل پلاسما ایجاد می شود که در اثر بر هم کنش با میدان مغناطیسی بوجود آمده از میدان الکتریکی فشرده می شود و پلاسمای موجود در سیستم را نیز فشرده می نماید. این پدیده به اثر پینچ در پلاسما معروف است. اثر پینچ اساس محصور سازی مغناطیسی پلاسما در سیستم هایی نظیر پینچ در راستای z ، پینچ در راستایө و پلاسمای کانونی می باشد. به این ترتیب می توان گفت که عامل اصلی پینچ پلاسما، بر هم کنش یک جریان الکتریکی قوی با میدان مغناطیسی ناشی از خود آن می باشد.
پلاسمای کانونی:
دستگاه های پلاسمای کانونی سیستم هایی هستند که با تکنولوژی نسبتاً ساده و ارزان توانایی تولید پلاسمای چگال با طول عمر نسبتاً کم را دارند. محدوده ی مشخصات این نوع پلاسما عبارت است از حجم 1cm3 چگالی 1025m-3 طول عمر 100ns، دما1KeV. ویژگی این سیستم ها باعث شده تا آنها مورد توجه پژوهشگران گداخت هسته ای و همچنین تولید و کاربرد پرتوهای یونی، الکترونی، نوترون و ایکس قرار گیرند]2و1[. سهولت نسبی تولید، ارزانی قیمت، شار زیاد و زمان کم تولید پرتو از سیستم های پلاسمای کانونی، بستر مناسبی را جهت کاربردهای صنعتی و پزشکی فراهم می آورد. زمان کم تولید پرتو( حدود 100ns) از یک طرف منجر به کاهش فوق العاده زیاد خطرات بهداشتی و زیست محیطی کاربران شده و از طرف دیگر این امکان را ایجاد می کند که به عنوان مثال وضعیت دقیق و واضح سوژه های متحرک در مقطع خاصی از زمان ثبت شود که این به نوبه خود زمینه ساز بسیاری از کاربردهای پزشکی و صنعتی می باشد.
سیستم پلاسمای کانونی به طور مستقل توسط مدر و فیلیپوف در اوایل سال 1960 طراحی و ساخته شد. دستگاه های ساخته شده توسط این افراد دارای هندسه ی متفاوتی هستند. در دستگاه پلاسمای کانونی نوع فیلیپوف، نسبت شعاع به طول آند بزرگتر از نوع مدر می باشد که این مقدار کمتر از یک است. اصول کاری، اطلاعات کانونی و دیگر پارامترهای این دو دستگاه با یکدیگر یکسان می باشند.
دستگاه فیلیپوف به گونه ای طراحی شده است که اصطلاحاتی در پینچ در راستای z، ایجاد می کند تا محدوده ی عایق را از ناحیه تنگش جدا نگاه دارد و مانع از ضربه بر روی آن در اثر تابش ناشی از پلاسمای داغ شود. نوع مدر نیز مانند یک تفنگ پلاسمای هم محوری طراحی شده که در فشار بسیار بالا کار می کند. پلاسمای کانونی به سرعت به منبع گداخت نوترون ها و منبع تولید اشعه ایکس(Mather 1965) تبدیل می شود. تا کنون دستگاه های متعددی با مخازن انرژی 1KJ تا 1MJ ساخته شده است. بین میزان انرژی ذخیره شده و اندازه ی دستگاه رابطه ای وجود دارد. آزمایشات انجام شده بر روی پلاسمای کانونی، نشان می دهد که در این دستگاه، پلاسمایی داغ(1KeV) و چگال (1025cm-3) ایجاد می شود که طول عمر آن 100ns می باشد و رابطه ای نیز بین طول عمر پلاسما و شعاع آند وجود دارد. نکته قابل توجه در این دستگاه، مقدار بالای nτ (n چگالی و τ زمان محصور سازی انرژی ) برای پلاسما و توالی نوترون های گداخت می باشد.
پلاسمای کانونی علاوه بر اینکه منبعی از پلاسمای داغ و چگال و همچنین نوترون های گداخت می باشد، میزان زیادی اشعه ی ایکس نرم، مخصوصاً زمانی که در آن از گازهایی با عدد اتمی z بالا استفاده شود، نیز ساطع می کند. این خصوصیت، پلاسمای کانونی را از دیگر دستگاه ها متمایز کرد و آن را به یک انتخاب مناسب برای لیتوگرافی اشعه ایکس تبدیل کرده است.
در زمینه استفاده کاربردی از این سیستم ها، در دهه های اخیر تحقیقات نظری و عملی گسترده ای در گوشه و کنار دنیا صورت گرفته است. با توجه به گستردگی بیشتر نوع مدر، طبیعی است که بیشتر این تحقیقات حول سیستم های مدر متمرکز بوده است. از این رو، اطلاعات منتشر شده در مورد چگونگی عملکرد و طراحی سیستم های از نوع فیلیپوف نسبت به نوع مدر بسیار محدود می باشد (احتمالاً ساخت دستگاه های نوع فیلیپوف بیشتر با تکیه بر اطلاعات تجربی صورت می گیرد).
تا بحال مهمترین اهداف پژوهشی عبارت بوده اند از بررسی ارتباط بین عوامل ساختاری گوناگون (از قبیل ولتاژ، اندوکتانس، ظرفیت بانک خازنی، فشار و نوع گاز، ابعاد و جنس الکترودها و نیز ابعاد و جنس عایق) و تأثیر این عوامل بر عملکرد دستگاه های پلاسمای کانونی. درسال های اخیر پژوهش در زمینه استفاده کاربردی از این سیستم ها نیز به تدریج در حال شکل گرفتن می باشد.