در صنایع ساخت و تولید، تلاش فراوانی در راستای تولید محصول با کیفیت بالا صرف می شود. تولید محصول با کیفیت مطلوب، متعاقبا بایستی ایمنی بالا و توجه به مقررات زیست محیطی را به دنبال داشته باشد. عملیاتی که زمانی برای ما قابل قبول بودند، با توجه به بالا رفتن انتظارات ما از صنایع، بیش از این مناسب به نظر نمیرسند. بنابراین، برای دستیابی به استاندارد های مطلوب تر، در فرآیندهای صنعتی مدرن، چندین متغیر سیستم تحت کنترل حلقه بسته عمل میکنند. کنترلکنندههای استاندارد( همانند PID ها، کنترل کنندههای پیشبین و….) به گونهای طراحی میشوند که باکمرنگ کردن تاثیرات اغتشاش وارده به سیستم، عملکرد سیستم را در شرایط رضایت بخشی نگهدارند. گرچه این کنترلکننده ها می توانند، از عهدهی انواع مختلفی از اغتشاش برآیند، اما تغییراتی وجود دارند که کنترلکننده نمیتواند آنها را ساماندهی کند. این تغییرات عیب نامیده میشود[]. به بیان دیگر میتوان هرگونه انحراف غیرمجاز در حداقل یک رفتار و یا پارامتر مشخصهی سیستم را عیب تعریف کرد[1].
افزایش مداوم پیچیدگی و قابلیت اطمینان و بازدهی در سیستمهای مدرن، مقتضی توسعهی پیوستهی حوزه ی کنترل و تشخیص خطا میباشد. این نیازمندی به وضوح در صنایعی که از لحاظ ایمنی بحرانی هستند، خود را نشان میدهد. این موارد شامل نیروگاه اتمی، صنایع شیمیایی و هواپیما گرفته تا صنایع جدید همچون وسایل نقلیه خودگردان و قطارهای سریع السیر میباشد. تشخیص و شناسایی به موقع خطا میتواند از توقف ناگهانی سیستم و خسارات جانی و مالی انسانها جلوگیری کند. در شکل 1—1. سیستم کنترل مدرن نحوهی روبرو شدن با عیب در سیستمهای مدرن به تصویر کشیده شدهاست. همانگونه که مشاهده میشود، سیستم کنترل شده، بخش اصلی این تصویر میباشد که شامل محرک، سنسور و دینامیک فرآیند است. هرکدام از این بخشها میتواند تحت تاثیر عوامل بیرونی مانند نویز فرآیند، نویز اندازهگیری و یا اغتشاش خارجی قرار گیرد. به علاوه در مواردی که بحث تشخیص خطا با قابلیت اطمینان بالا مطرح می شود، بایستی عدم قطعیت های سیستم را در نظر گرفت. در چنین شرایطی سیستم همچنان ممکن است تحت تاثیر عیب ( با تعریفی که قبلا از آن ارائه شد) باشد [[ii]]. در این صورت انتظار ما از سیستم تشخیص عیب این است که بتواند رخداد عیب را از بین سایر عوامل بیرونی تمیز دهد.
1—1. سیستم کنترل مدرن [2]
همانگونه که قبلا بیان شد، در حالت کلی میتوان عیب را هر گونه انحراف غیر مجاز در رفتار و یا پارامترهای مشخصهی سیستم تعریف کرد؛ به عنوان مثال عملکرد نامناسب حسگر[2] در سیستم را میتوان به عنوان عیب در نظر گرفت. به بیان دیگر هر تغییر غیر منتظرهای که موجب تنزل عملکرد سیستم شود، در حوزهی عیوب سیستم قرار میگیرد. در مقابل عیب اصطلاح نابودی[3] نیز مطرح میشود که به توقف و فروپاشی کامل سیستم اشاره دارد. شایان ذکر است که عیب بیشتر به عملکرد نامناسب گفته میشود و استفاده ازاصطلاح نابودی بیشتر مقتضی رخداد فاجعه است؛ چرا که در واقع نابودی، ناتوانی دائمی دستگاه را در انجام وظایفش تحت شرایط عملکرد تعریفی به همراه دارد[2].
دستهبندیهای مختلفی میتوان از عیب ارائه داد. دسته بندی میتواند براساس مکان رخ دادن عیب در سیستم و یا بر اساس تغییرات زمانی پیشرفت عیب در سیستم باشد. بر اساس محل عیب میتوان سه دسته عیب به صورت زیر تعریف کرد[2]:
الف. عیب محرک[4]، که شامل عملکرد نادرست در تجهیزاتی است که سیستم را تحریک میکند. به عنوان مثال عیب محرک الکترومکانیکی در یک موتور دیزلی.
ب. عیب فرآیند[5]، هنگامی رخ میدهد که تغییرات در سیستم، عدم اعتبار روابط دینامیکی حاکم بر سیستم را به همراه داشته باشد. به عنوان مثال نشت تانک در یک سیستم کنترل دو-تانکه.
ج. عیب حسگر[6]، که خود را به صورت تغییرات جدی در اندازهگیریهای سیستم نشان میدهد.
همچنین بر اساس روند تغییرات زمانی عیب میتوان دستهبندی زیر را ارائه نمود[[iii]]:
الف. عیب ناگهانی[7]، که آن را به صورت توابع پلهای شکل مدل می کنند. این عیب معمولا خود را به صورت بایاس در سیگنال موردارزیابی نشان میدهد.
ب. عیب هموار[8]، که آن را به صورت توابع مرتبه اول مدل میکنند. این عیب معمولا خود را به صورت واگرا و منحرف شدن سیگنال موردارزیابی از مقادیر عادی نشان میدهد.
ج. عیب متناوب[9]، ترکیبی از ضربهها با دامنههای متفاوت است.
در شکل 1—1. سیستم کنترل مدرن [2]بلوکی تحت عنوان تشخیص خطا[10] به موازات سیستم اصلی قرار دارد. نقش اصلی این بلوک، مانیتور کردن رفتار سیستم و جمعآوری هرگونه اطلاعات مربوط به عملکرد غیر عادی در هریک از اجزای سیستم است. بنابراین وظیفهی تشخیص خطا را میتوان به سه قسمت عمده تقسیم کرد[2]:
الف. کشف عیب[11]، این بخش به تصمیمگیری دربارهی وضعیت سیستم برمیگردد. تشخیص اینکه برای سیستم اتفاق غیر عادی رخ داده است و یا سیستم در شرایط عادی در حال کار است.
ب. تمیز دادن عیب[12]، این بخش به تعیین موقعیت و محل رخدادن خطا میپردازد. مثلا اینکه کدام سنسور و یا محرک درگیر عیب هستند.
ج. شناسایی عیب[13]، تعیین اندازه، نوع و طبیعت عیب در این بخش جا دارد.
روشهای تشخیص خطای مختلفی تا کنون طراحی شدهاند. همچنین این روشها بر اساس معیارهای مختلفی به گروههای متفاوت قابل طبقه بندی هستند. در این قسمت دستهبندی زیر از [[iv]] ارائه شده است. روشهای عیبیابی را میتوان در سه دستهی مختلف جای داد:
الف. سخت افزاری قابلیت اطمینان[14]، این روش از روشهای قدیمی عیبیابی میباشد. پایهی این روش بر اساس استفاده از چندین حسگر، محرک و پردازشگر سختافزاری و یا نرمافزاری است که وظیفهی کنترل و اندازهگیری پارامتر بخصوصی از سیستم را به عهده دارند. در ادامه یک سامانهی رایگیری به کار گرفته میشود که در مورد رخداد و عدم رخداد عیب و محل نسبی رخداد خطا تصمیم میگیرد. استفاده از این روش در سیستمهای بسیار حساس همچون کنترل پرواز بسیار مرسوم میباشد. گرچه این متود بسیار قابل اطمینان است؛ اما تجهیزات اضافه و نگهداری و تعمیر آنها هزینهبر است. بهعلاوه نیاز به فضای لازم برای تجهیزات سخت افزاری این روش از مشکلات جدی آن به حساب میآید.
ب. روشهای برپایهی سیگنال[15]، این روش در عمل یکی از روشهای متداول برای عیبیابی میباشد. ایدهی اصلی این روش مانیتور کردن سطح یک سیگنال خاص از سیستم میباشد؛ در صورتی که این سیگنال به یک حد آستانهی مشخص برسد، آلارم رخداد عیب فعال میشود. این متود برای استفادهی عملی بسیار راحت است؛ اما مشکلات و معایب جدی خاص خود را دارد. اولین مشکل این که این روش مقاوم[16] نیست. مقاوم نبودن به این معناست که در حضور نویز، تغییرات ورودی و یا تغییر نقطهی کار ممکن است که آلارم رخداد عیب به اشتباه فعال شود. دومین مشکل این که یک عیب به تنهایی میتواند موجب تجاوز تعداد زیادی از سیگنالهای سیستم از حد آستانهشان شود؛ بدین ترتیب، تشخیص موقعیت و محل خطا بسیار سخت میشود. در راستای حل این مشکلات، ترکیب این روشها با روشهای آماری و تصادفی مطرح میشود؛ این روش برای توسعه دادن مقاومت و دقت روشهای عیب یابی است.
ج. روشهای برپایهی مدل[17]، کلیت این روش را می توان به این صورت بیان کرد که ابتدا یک مدل ریاضیاتی از سیستم، با اطلاعات اولیهای که از سیستم داریم تعریف میکنیم؛ سپس برخی از پارامترهای قابل دسترس از سیستم اصلی اندازهگیری میشود. با استفاده از مدلی که در ابتدای کار طراحی شد، مقادیر پارامترهای اندازهگیری شده را تخمین میزنیم و پارامترهای واقعی سیستم با پارامترهای تخمینی از مدل سیستم مقایسه میشوند. سیگنالی به نام سیگنال باقیمانده از تفاوت بین مقادیر واقعی اندازهگیری شدهی پارامتر ها و مقدار تخمینی آنها ساخته میشود. در ادامه حد آستانهای بررای سیگنال باقیمانده تعریف میشود. سیگنالهای باقیماندهی مختلفی برای تشخیص رویداد عیب در قسمت های مختلف سیستم قابل نعریف هستند. تحلیل هر یک از این سیگنالهای باقیمانده میتواند در بخش تشخیص محل خطا مفید باشد.
گاه با در نظر نگرفتن متودهای عیب یابی سخت افزاری، که در دسته بندی قبل دستهی الف را شامل میشدند، باقی روش های عیب یابی را در سه دسته جای میدهند. همانند آن چه در [1] آمده است. سه دستهی یاد شده به این صورت میباشند:
الف. روشهای بر پایهی داده[18]، این دسته از روشهای عیبیابی را میتوان معادل دستهی بر پایهی سیگنال در دستهبندی قبلی دانست. مقادیر اندازه گیری لازم به صورت مستقیم از داده های فرآیند ضبط میشوند. سیستمهای کنترل صنعتی مدرن، از یک سیستم کاملا صنعتی گرفته تا یک ماشین تولید کاغذ ساده، سیستمهای بزرگ مقیاس[19] همراه با ابزارآلات پیچیدهی فر آیندهای مدرن هستند. سیستم های بزرگ مقیاس حجم عظیمی از دادهها را تولید میکنند. گرچه این دادههای تولیدی معادل اطلاعات زیاد از سیستم هستند؛ اما از سوی دیگر این مسئله حائز اهمیت است که اپراتور و یا مهندس بتواند با مشاهده کردن دادههای ضبط شده از سیستم به راحتی عملکرد سیستم را مورد ارزیابی قرار دهد. نقطهی قوت متودهای عیب یابی برپایهی داده این است که میتواند دادهها با ابعاد بالا را به فضای با ابعاد کوچکتر انتقال دهد، که در فضای جدید تنها دادههای مهم موجود هستند.با محاسبهی اطلاعات آماری معنادار از دادههای مهم فضای کاهش یافته، روشهای عیبیابی برای سیستمهای بزرگ مقیاس به طرز قابل توجهی توسعه یافتهاند. بزرگترین عیب این دسته، وابستگی شدید به کمیت و کیفیت دادههای فرآیند میباشد.
ب. روشهای تحلیلی[20]، این دسته را می توان به عنوان زیر دستهای از گروه ج دستهبندی [4] در نظر گرفت. روشهای تحلیلی بر خلاف روشهای بر پایهی داده، از مدلهای ریاضیاتی استفاده میکنند؛ این مدلهای ریاضیاتی از اصول اولیه به دست میآیند. روشهای تحلیلی در مواردی که اطلاعات کافی از سیستم داریم، کاربرد دارند؛ به عنوان مثال در جایی که مدل رضایتبخش و اطلاعات سنسورهای کافی از سیستم را در اختیار داریم. این دسته شامل روشهای تطبیقی تخیمن پارامتر[21]، روشهای رویتگر[22] و روشهای روابط معادل[23] میباشد. بیشترین کاربرد روشهای تحلیلی در سیستمهای با تعداد ورودی و خروجی و متغیرهای حالت کم میباشد. به کار بردن این روش برای سیستمهای بزرگ مقیاس کار سختی میباشد، چرا که نیازمند مدلی با جزئیات کافی از سیستم میباشد و تعریف همچین مدلی از سیستم بزرگ مقیاس نیازمند دستیابی به تمام وابستگیهای متقابل بین قسمتهای مختلف یک سیستم چند متغیره میباشد. مهمترین مزیت این روش همانگونه که از نام آن برمیآید قابلیت تفسیرپذیری فیزیکی پارامترهای فرآیند است. به عبارت دیگر هنگامی که مدل ریاضیاتی جزئی از سیستم در دسترس باشد، استفاده از روشهای تحلیلی عیبیابی نسبت به روشهای برپایهی داده ارجحیت دارد.
ج. روشهای برپایهی اطلاعات، این دسته را می توان به عنوان زیر دستهی دیگری ازگروه ج دستهبندی [4] در نظر گرفت. این روشها از مدلهای کیفی برای توسعهی عملکرد عیبیابی استفاده میکنند.این روشها به خصوص برای زمانی که مدل ریاضیاتی دقیقی از سیستم در دست نیست، بسیار قابل استفاده است.بسیاری از این روشها بر پایهی اطلاعات غیر دقیق، سیستمهای هوشمند و شناسایی الگو عمل میکنند. همانند روشهای تحلیلی، از این دسته نیز در مورادی که تعداد ورودی، خروجی و متغیرهای حالت سیستم کم باشد استفاده میکنند چرا که تعریف یک مدل کیفی از سیستمهای بزرگ مقیاس نیازمند تلاش بسیار است. گاه با استفاده از روشهای نرمافزاری، امکان استفاده از روشهای برپایهی اطلاعات، حتی برای سیستمهای پیچیده فراهم میشود.
تا کنون دو دسته بندی متداول از روشهای عیبیابی بیان شده است. اما دستهبندی کاملتری که در برخی مراجع دیده میشود به شرح زیر است. در این دستهبندی، روشها را به دو دستهی اصلی برپایهی مدل و بر پایهی حافظهی فرآیند تقسیم میکنند. هر کدام از این دستههای اصلی به دو زیر دسته تقسیم میشوند، زیر دستهی کمی[24] و کیفی[25].
روشهای بر پایهی مدل که در دستهی ج دستهبندی[4] قبلا توضیح داده شد. این روشها بر اساس فهم فیزیکی اولیهای است که از سیستم در اختیار داریم. این اطلاعات پیشین هم در غالب مدلهای کمی و هم در غالب مدلهای کیفی قابل تحقق هستند. مدلهای کمی نیازمند اطلاعات دقیق و جزئی از فیزیک سیستم هستند، در حالی که مدلهای کیفی به صورت قواعد کیفی و مفاهیم فیزیکی کیفی قابل پیادهسازی هستند. دو زیر دستهی اخیر پیش از این در دستهی ب و ج از دستهبندی [1] توضیح داده شدند.
روشهای بر پایهی حافظهی فرآیند[26]، از مقادیر کافی دادههای موجود در حافظهی سیستم برای عیبیابی بهره میبرند. دادههای حافظه به اطلاعات مفیدی تغییر شکل یافته و به سیستم تشخیص خطا گزارش میشود. به فرآیند تغییر شکل دادههای حافظه به اطلاعات مفید، استخراج مشخصه گویند. استخراج مشخصه هم می تواند طی یک پروسهی کمی صورت پذیرد و هم میتواند طی یک پروسهی کیفی باشد. حالت اول از طریق روشهای جعبهی سیاه[27]، بدون هیچ گونه اطلاعاتی از سیستم و حالت دوم از طریق روشهای جعبهی خاکستری[28]، با اطلاعات کیفی و نسبی راجع به سیستم ممکن است [[v]].
دستهبندی فوق از بین سایر دستهبندیها کاملتر به نظر میآید. روشهای برپایهی مدل کمی را میتوان مجددا به دو زیر دستهی جامع[29] و ساده شده[30] تقسیم کرد. برای مدل کردن حالت گذرای رفتار یک سیستم، استفاده از مدل جامع شامل جزئیات بسیار مفید است. زیر دستهی دوم به جهت سادگی در مورد توجه است؛ چرا که با تبدیل مشتقات جزئی به مشتقات معمولی و یا حتی معادلات جبری، موجب سادگی محاسبات میگردد [[vi]]. مدلهای فیزیکی ساده شده، معمولا از یک مدل ریاضی صریح و ساده استفاده میکنند؛این امر تشخیص عیب را با سهولت بیشتری همراه میکند. مشکل روشهای کمی برپایهی مدل این است که پیچیده هستند و به سختی قابل
توسعه میباشند[6]، [[vii]]، [[viii]].
بر خلاف روشهای کمی برپایهی مدل که از روابط ریاضی برای نمایش اطلاعات سیستم استفاده میکنند، روشهای کیفی برپایهی مدل از روابط کیفی و اطلاعات پایهای برای نمایش اطلاعات سیستم استفاده میکنند. این دسته را میتوان به دو گروه روشهای برپایهی قواعد و گروه روشهای بر پایهی اطلاعات فیزیکی کیفی تقسیم کرد. روشهای برپایهی قواعد از اطلاعات سیستم برای نوشتن پایگاهی از قواعد اگر-آنگاه استفاده میکند.این روشها به راحتی قابل توسعه و کاربرد هستند[6]. مدلهای کیفی دربردارندهی اطلاعات کیفی هستند که از رفتار فیزیکی سیستم استنباط میشود [[ix]]. روش های کیفی در فرآیندهای غیر حساس بسیار پرکاربرد هستند[6]. وبرای این که بتوان عیب را به درستی تشخیص داد بایستی پایگاه قواعد کاملی داشته باشیم.
روشهای برپایهی حافظهی فرآیند، به دنیال یک رابطهی صحیح بین ورودیها و خروجیهای اندازهگیری شده از سیستم هستند. اگر این رابطه هیچگونه کعنای فیزیکی خاصی نداشته باشد، روش جعبه سیاه خواهد بود[6]. اما در صورتی که رابطهی استخراج شده بر اساس معانی فیزیکی نسبی سیستم باشد روش جعبه خاکستری خواهد بود. بهطور کلی روشهای برپایهی حافظه هنگامی که دادههای آموزشی بهراحتی قابل تولید و جمعآوری باشند، بسیار کاربرد خواهند داشت [6].
دسته بندی های مختلفی از روشهای عیبیابی بیان شد. برای این که کاربر بتواند به این روشها اعتماد کند، این روش ها بایستی دارای خصوصیات لازم باشند. این خصوصیات در [7] به شرح زیر آمده است:
[1]Fault
[2] Sensor
[3] Failure
[4] Actuator fault
[5] Process fault
[6] Sensor fault
[7] Abrupt fault
[8] Incipient fault
[9] Intermittent fault
[10] Fault diagnosis
[11] Fault detection
[12] Fault isolation
[13] Fault identification
[14] Hardware redundancy
[15] Signal based fault detection
[16] Robust
[17] Model based fault detection
[18] Data-driven methods
[19] Large-scale systems
[20] Analytical methods
[21] Adaptive parameter estimation
[22] Observer-based methods
[23] Parity relations
[24] Quantitative methods
[25] Qualitative methods
[26] Process history based
[27] Black box
[28] Gray box
[29] Quantitative detailed models
[30] Quantitative simplified models
[[i]] L. H. Chiang, E. L. Russell, and R. D. Braatz, Fault Detection and Diagnosis in Industrial Systems. Springer, 2001.
[[ii]] M. Witczak, Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems. Springer, 2007.
[[iii]] S. Simani, C. Fantuzzi, and R. J. Patton, Model-Based Fault Diagnosis in Dynamic Systems using Identification Techniques. Springer, 2002.
[[iv]] I. Izadi Najaf Abadi, “Fault diagnosis in sampled-data systems”,Ph. D. Dissertation, Dept. ECE, University of Alberta, Edmonton, Fall 2006.
[[v]] M. D. Shah, “Fault detection and diagnosis in nuclear power plant- a brief introduction”, International Conference on current trends in technology, NuiCone, 2011.
[[vi]] S. Katipamula, M. Brambley, “Methods for fault detection, diagnostics, and prognostics for building systems- a review”, International Journal of HVAC&R research, vol.11, no.2, Apr. 2005.
[[vii]] V. Venkatasubramanian, R. Rengaswamy, K. Yin and S. N. Kavuri, “A review of process fault detection and diagnosis Part I: Quantitative model-based methods”, Computers & Chemical Engineering 27, pp. 293-311, Apr. 2002.
[[viii]] V. Venkatasubramanian, R. Rengaswamy, K. Yin and S. N. Kavuri, “A review of process fault detection and diagnosis Part III: Process history based methods”, Computers & Chemical Engineering 27, pp. 327-346, Apr. 2002.
[[ix]] V. Venkatasubramanian, R. Rengaswamy, K. Yin and S. N. Kavuri, “A review of process fault detection and diagnosis Part II: Qualitative models and search strategies”, Computers & Chemical Engineering 27, pp. 313-326, Apr.2002.
***ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است***
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است
هنگامی که در دهه شصت تکنولوژیهای اتوماسیون دیجیتال در دسترس قرار گرفت، از آنها جهت بهبود و توسعه سیستمهای اتوماسیون صنعتی استفاده شد. مفاهیمی مانند صنایع خودکار و سیستمهای کنترلی خودکار توزیعی، در زمینه اتوماسیون صنعتی معرفی گردید و کاربرد شبکههای ارتباطی تقریبا رشد قابل توجهی نمود. با گسترش شبکههای ارتباطی در سیستمهای اتوماسیون صنعتی، جمع آوری اطلاعات و عملیات کنترلی در سطو ح پایین به این شبکهها سپرده شد. این گسترش تا جایی پیشرفت نمود که امروزه در یک سیستم مدرن اتوماسیون، دستگاههای موجود در سطوح مختلف سیستم، از طریق این شبکه های ارتباطی به انتقال داده میپردازند. از این رو کوششهایی جهت استاندارد سازی بین المللی در زمینه شبکهها صورت گرفت که دستاورد مهم آن پروتکل اتوماسیون صنعتی MAP در راستای سازگاری سیستمهای ارتباطی بود. پروتکل MAP جهت غلبه بر مشکلات ارتباطی بین دستگاههای مختلف اتوماسیون گسترش پیدا کرد و به عنوان یک استاندارد صنعتی جهت ارتباطات داده ای در کارخانهها پذیرفته شد. عملکرد و قابلیت اطمینان یک سیستم اتوماسیون صنعتی در حقیقت به شبکه ارتباطی آن بستگی دارد. در یک شبکه ارتباطی اتوماسیون صنعتی، بهبود عملکرد شبکه و قابلیت اطمینان آن و استاندارد بودن ارتباطات با توجه به اندازه سیستم و افزایش حجم اطلاعات تعیین میگردد [1].
امروزه یک کارخانه با اتوماسیون مدرن یا نسبتا مدرن، اتاقهای فرمان و کنترل، از محلهایی هستند که نسبت به گذشته پیشرفتهای بسیار جالب توجهی داشته اند. در چنین اتاقهایی از پانلهای بزرگ قدیمی[3] که شکل فرآیند روی آنها ترسیم شده بود و به چراغهای سیگنال زیادی مجهز بودند دیگر خبری نیست. همه چیز را بایستی در صفحات کامپیوتر یا اصطلاحاً HMI جستجو کرد. اما افراد کاوشگر در پشت این صفحات به دنبال ارتباطات فیزیکی بین کامپیوتر و فرآیند هستند و با مختصر جستجو به پانلهایی در همان نزدیکی برخورد میکنند که تجهیزات ارتباطی در آن نصب گردیده اند. و با نگاهی به تجهیزات ارتباطی سخت افزاری شبکه در یک نگاه متوجه میشوند که شبکه مورد استفاده همان شبکه معروف اترنت صنعتی[5] است [2].
امروزه شبكه اترنت در كاربردهای اداری نیز آنقدر معروف و مرسوم شده كه بسیاری از كاربران غیر متخصص نیز با تجهیزات آن مانند
هاب، سوئیچ، كابل و … آشنا هستند. در هر صورت در كاربرد HMI اگر چه ممكن است در مواردی و بدلایلی ارتباط فوق را بصورتهای دیگر و توسط شبكههای صنعتی دیگر نیز بتوان مشاهده كرد، ولی در سیستمهای مدرن امروزه كمتر اتفاق میافتد كه در سطحHMI شبكه ای به جز اترنت صنعتی بكار گرفته شود.
برای روشن شدن مبحث به جایگاه دو شبکه اترنت و پروفیباس در این هرم اتوماسیون میپردازیم:
ساختار یک سیستم اتوماسیون جامع، که دربرگیرنده تجهیزات مختلف کنترل و مانیتورینگ است، را به ساختاری هرمی شکل تشبیه میکنند. در این ساختار هر دسته از تجهیزات بسته به نوع و کاربرد جایگاه خاصی دارند. بر این اساس سطوح مختلفی را برای این هرم تعریف میکنند و در هر سطح تجهیزات مربوطه را همراه با شبکههای صنعتی قابل استفاده معرفی مینمایند. پایین ترین سطح حسگرها و عملگرها هستند. همانطور که از نامش پیداست سطحی است که در آن سنسورها و عملگرها قرار میگیرند. یکی از شبکههای صنعتی معروف که در این سطح استفاده میشود ASI است. سطح بالاتر فیلد است. در این سطح تجهیزاتی مانند ورودی خروجیهای ریموت و ثباتها و دیگر وسایل فیلد قرار میگیرند و شبکه مورد استفاده آنها
می تواند پروفیباس باشد. از سطح فیلد که بالاتر برویم به سطح کنترل میرسیم. در این سطح PLCها، سیستمهای DCS و HMI ها قرار میگیرند، در برخی تقسیم بندیها سطح کنترل را به دو سطح HMI و کنترل تقسیم بندی میکنند؛ و بالاخره بالاترین سطح مدیریت است که در آن سیستمهای اطلاعات مدیریت مانند سیستمهای تولید، نگهداری، تعمیرات، فروش و خرید قرار میگیرد. در برخی موارد اطلاعات موجود در سطح کنترل به صورت خام قابل استفاده برای سطح مدیریت نیستند و بایستی روی آنها پردازش صورت گیرد. از این رو سطح واسطی بین ایندو با عنوانMES تعریف میشود. اما آنچه لازم است مورد توجه قرار گیرد آنست که در هرم فوق هرقدر از سطح پایین به سطح بالا نزدیک میشویم تمرکز اطلاعات بیشتر میشود. بنابراین برای جابجایی آنها، به شبکههایی با سرعت بالاتر نیازمندیم [3].
[1] Computer Integrated Manufacturing
[2] Distributed computer Control System
[3] Mimic
[4] Human Machine Interface
[5] Industrial Ethernet
[6] Actuator Sensor Interface
[7] Recorder
[8] Process Logic Controller
[9] Distributed Control System
[10] Manufacturing Execution System
***ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است***
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است
گسترش و توسعه شهرها سبب افزایش میزان مصرف انرژی الکتریکی میگردد که لازمه تأمین آن احداث و توسعه شبکههای انتقال و توزیع نیرو میباشد که در شهرهای بزرگ این مهم به سادگی عملی نمیباشد. طبیعی است هرچه بر میزان انرژی الکتریکی درخواستی افزوده گردد، لازمه تأمین آن افزایش ولتاژ خطوط انتقال جدید میباشد که در چنین حالتی مشکلات زیر پدبدار میشود:
استفاده از خطوط انتقال نیرو کمپاکت و نزدیک سازی فازها با بهرهگیری از شیوههای مختلف، روشهایی هستند که در تقلیل مساحت زمین اشغالی به کار گرفته می شوند.
2-2- تعریف خطوط انتقال کمپاکت
کمپاکت سازی خطوط به کلیه ترفندها و روشهایی اطلاق می گردد که در نزدیک سازی فواصل افقی و عمودی فازها مؤثر باشند. طبیعی است نزدیک سازی فازها خود به عوامل بسیار متعدد دیگری بستگی دارد که در مجموعه دانش های متعلق به خطوط انتقال کمپاکت جای میگیرند. بنابراین حاصل تمام این روشها سبب تقلیل پهنا و ارتفاع پایه ها یا برج ها میشوند.
به طور کلی خطوط انتقال کمپاکت به پایه ها یا برجهای خاصی اطلاق نمیشود بلکه بر حسب اینکه هدف از کمپاکت سازی چه باشد میتوان روشهای مختلفی را بکار گرفت.به عبارت دیگر پهنای برج یا فاصله فازهای کناری که عملا در محاسبه عرض باند عبور دخالت دارد، بر حسب اینکه خطوط انتقال معمولی یا خیلی کمپاکت باشند میتواند، در محدوده وسیعی تغییر نماید. بنابراین خطوط کمپاکت میتواند از انواع مختلفی تشکیل گردد که بر حسب شرایط جغرافیایی و جوی منطقه و سایر پارامترهای فنی واقتصادی میتواند تغییر نماید.
2-3- مزایا و معایب خطوط انتقال کمپاکت
تجارب کشورهای پیشرفته جهان نشان میدهد که استفاده از خطوط انتقال کمپاکت به خصوص در مناطق شهری یا مناطقی که محدودیت زمین وجود داشته باشد در اغلب موارد اقتصادی و موجه میباشد، اما این نوع خطوط دارای مزایا و معایبی نیز می باشند که ذیلأ بطور اختصار به آنها اشاره میگردد:
2-3-1- مزایای خطوط انتقال کمپاکت- برخی از مزایا خطوط انتقال کمپاکت به شرح زیر می باشد:
2-3-2- معایب خطوط انتقال نیرو کمپاکت- در کنار مزایایی که در بالا به آنها اشاره گردیده است برخی از معایب این نوع خطوط انتقال نیرو به شرح زیر می باشند :
***ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است***
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است
به نظر می رسد که رشد آدمی تمام طول عمر او را در بر می گیرد و به خصوص حوادث مهم زندگی تأثیرات بزرگی را بر رشد وی به جای می گذارد. در جریان این تحولات تغییرات زیستی، رفتاری و اجتماعی درتعامل با مقتضیات فرهنگی و تاریخی به شکل گیری تجارب جدید منجر می شود. پدیده های روانی مانند روابط عاطفی، احساس خود و حافظه از همان آغاز کودکی تا دوره پیری در نتیجه تغییرات زیستی، شناختی و اجتماعی شکل می گیرند و چگونگی و زمان وقایع مهم زندگی نظیر ورود به مدرسه،استقلال ازخانواده،آغازپرورش فرزند و بازنشستگی تأثیرات خود را برجریان رشد فردی به جای می گذارند(لطف آبادی،1378).
دو امر بسیارمهم و دشوار از امور رشد و تکاملی دوران پیری به جنبه هایی مربوط می شوند که مخصوصاً برای همه بزرگسالان مهم
هستند: کار و زندگی خانوادگی. اشخاص سالخورده دراین جنبه ها طبعاً با مسائل سازشی مواجه می شوند چنانکه احتمالاً درگذشته خود با بعضی ازآنها مواجه بوده اند. اما در این دوره ازجهات متعدد بی مانند هستند. مثلاً نه تنها باید با شرایط کاری سازگار شوند بلکه باید با این واقعیت هم بسازندکه سودمندی آنها به سبب سالمند شدن کمترشده است ودرنتیجه، شأن ومقام آنها درگروه کارکاهش یافته است. ازاین گذشته، اشخاص سالمند، مخصوصاً پس ازپیری، با مشکلاتی جهت سازش با بازنشستگی مواجهند(شعاری نژاد،1376).
پدیده بازنشستگی فرآیندی چند بعدی است که تابع ویژگیهای گروهی، ملی و پیوند های فرهنگی بوده وبستگی به خصوصیات فردی و شرایط زمانی و مکانی دارد. واکنش های عاطفی نسبت به این پدیده و درک نهایی آن دارای جنبه های متغیر فردی ، ابعاد وسیع اجتماعی و عمومی است. (باکلی[1]، 1976).
بازنشستگی یعنی جداشدن فرد از نقشی که سال های متمادی داشته است و در قالب جدیدی درآمدن،، چون سالمند معمـولاً با نقـش جدید آشنایی ندارد دچـار سرگردانی و اضطراب شده و بــرخلاف آنچه از بازنشستگی به عنوان شروع آزادی تصــور می شود ، سالمند خود را بیش از پیش افسرده می یابد ؛ کـــه این موضوع ازلحاظ روانی و جسمی تأثیر فراوانی برکیفیت زندگی اوخواهد گذاشت(شجری،1373).
گاهی مردان سالمند، بازنشستگی را نوعی از کارافتادگی و انزوای اجتماعی تلقی می کنند و طبیعتاً با شروع بازنشستگی دچار خلاء روانی می شوند (کریک وگریس[2]، 1989) .
روانشناسان هستی گرا دیگر به شناخت نشانه های مرضی و پاتولوژیک[3] آن گونه که فروید و پیروانش توجه داشتند ، علاقه ای نشان نمی دهند . بلکه تلاش و نیروی خود را متوجه شناخت شکوه هایی نظیر احساس تنهایی وانزوا، سرگردانی و بلاتکلیفی ، احساس پوچی وبیهودگی می کنند. به گفته ی فرانکل (1997) ” امروز بیماران غالبا ” از بی معنایی و پوچی و بی هدفی زندگی شکایت دارند و دراین « خلاء هستی » است که خستگی ها، بی حالی ها، افسردگی ها، ناامیدی ها و بی قراری ها ظاهر می شوند.
کنترل لغزشی در کنار محاسنی که دارد، دارای معایبی نیز میباشد. معایب کنترل لغزشی به روشهای مختلفی میتواند برطرف شود که یکی از بهترین آنها، استفاده از سامانه های فازی برای جبران عدم قطعیت های مدل و همچنین پارامترهای دارای تغییرات شدید میباشد که این جبرانسازی توسط سامانه فازی باعث برطرف شدن معایب کنترل لغزشی میگردد.
در ادامه این فصل، دو روش کاملا مجزا برای استفاده از س سامانه های فازی در بهبود سازی عملکرد کنترل لغزشی معرفی خواهد شد. همانگونه که ذکر شد، یکی از مشکلات کنترل لغزشی، وجود ترم های نامعلوم در سامانه میباشد، این ترمهای نامعلوم توسط سامانه های فازی قابل تخمین زدن و جایگزینی هستند که در قسمت بعدی بطور کامل معرفی میشوند. یکی دیگر از مشکلات کنترل لغزشی، ایجاد وزوز بر روی سطح لغزش میباشد، این مشکل نیز میتواند با استفاده از سامانه های فازی وتخمین قسمتی از کنترلگر، برطرف گردد. عملکرد این نوع سامانه فازی نیز در ادامه فصل بطور کامل توضیح داده خواهد شد.
⦁ مثالهایی از کاربرد کنترل لغزشی فازی تطبیقی :
⦁ در سال 2000 استفاده از کنترل لغزشی فازی تطبیقی برای کنترل نوعی ربات معرفی گردید ][. در این روش، سامانه فازی تطبیقی عمل تخمین اغتشاش را انجام میدهد و ترمهای متغیر با زمان را شناسایی میکند. این روش باعث کاهش پیچیدگی عمل کنترل میشود.
⦁ در سال 2002 کاربردی برای کنترل لغزشی فازی تطبیقی بر پایه الگوریتم ژنتیک برای سازه های ساختمانی در زمان زلزله پیشنهاد شد ][. در این طراحی با استفاده از توابع عضویت دقیق و محرکهای مورد نیاز و طراحی یک کنترلگر مناسب، میتوان یک سازه را در زمان زلزله بطور ایمنی کنترل کرد و از آسیب رسیدن به آن جلوگیری کرد.
⦁ در سال 2008 استفاده از کنترل دینامیکی لغزشی فازی تطبیقی وکنترل سینماتیک براساس برنامه ریزی تکاملی برای رباتهای محرک چرخدار معرفی شد ][. در این پژوهش از کنترل سینماتیک بر پایه برنامه ریزی تکاملی برای معین کردن تمام بهره های کنترل بهینه استفاده شده است و کنترل کنترل لغزشی فازی تطبیقی به مسائل عدم قطعیتها و اغتشاشات خارجی رسیدگی میکند. نتایج این تحقیق نشان داده است که کنترل لغزشی فازی تطبیقی در مقایسه با کنترلر های دیگر دارای عملکرد بهتری در مقابل عدم قطیتها و اغتشاشات خارجی دارد.
⦁ در سال 2008 کنترل سرعت جابجایی در سامانه سروو هیدرولیکی با استفاده از کنترل لغزشی فازی تطبیقی معرفی گردید ][. از آنجایی که سامانه فوق بدلیل غیر خطی بودن و متغیر با زمان بودن دارای مشخصات خاصی میباشد و از آنجایی که در این سامانه، تحقق کنترل کننده مشکل میباشد، لذا از کنترل لغزشی فازی تطبیقی استفاده شده است و از نتایج این تحقیق مشاهده گردیده که پایداری سامانه فوق تضمین گردیده است و مقاومت بسیار بالا و قابلیت خود تطبیقی در مقابل اغتشاشات خارجی را دارد و همچنین در آزمایشات متفاوت، دارای عملکرد دینامیکی دقیقی میباشد.
⦁ در سال 2008 کاربرد کنترل لغزشی فازی تطبیقی و پی آی دی در کنترل دمای سامانه تولید بخارمعرفی شد][. در این پژوهش از ترکیب کنترل لغزشی فازی تطبیقی و کنترل انتگرالی تناسبی استفاده شده است و مشاهده گردیده که کنترل فوق وابستگی زیادی به مدل ریاضی سامانه ندارد و از منطق فازی برای عمل ردیابی و از کنترل لغزشی برای افزایش مقاومت کنترل کننده استفاده میشود. همچنین قانون تطبیق باعث میشود که خطای ردیابی سریعتر به سمت صفر همگرا شود. در نهایت از نتایج، مشاهده میشود که کنترلگر فوق دارای عملکرد گذرا و ماندگار مناسب و مقاومت بسیار خوبی در مقایسه با کنترل پی آی دی میباشد.
⦁ در سال 2009 استفاده از کنترل لغزشی فازی خود سازمانده تطبیقی برای توانبخشی یک بازوی نیوماتیکی ربات پیشنهاد شد][. از این روش برای قسمت های آسیب پذیر در تغییرات جابجایی سریع و یا کنترل نیرو استفاده میشود. از نتایج این تحقیق مشاهده میشود که مقاومت و کارایی الگوریتم کنترل فوق در عمل ردیابی بسیار مطلوب میباشدو البته پایداری آن بوسیله تئوری پایداری لیاپانوف برسی و صحت آن تایید گردیده است.
⦁ در سال 2009 کاربردی از کنترل لغزشی فازی تطبیقی برای سامانه های چند ورودی-چند خروجی معرفی شد][. در این مورد نیز مشاهده میگردد که از خواص تقریب زنی کنترل فازی به همراه مقاومت و پایداری کنترل لغزشی استفاده شده است و به کمک قانون تطبیق، پارامترها نیز بطور آنلاین تنظیم میشوند. نتایج نشان میدهد که عملکرد ردیابی بسیار مناسب میباشد و همچنین مقاومت کنترلگر با وجود اغتشاش خارجی و عدم قطعیت های موجود، خوب است.
⦁ در سال 2009 استفاده از یک کنترلر لغزشی فازی تطبیقی مقاوم برای کنترل 3 بازوی مکانیکی موازی سه آر تی استفاده شد][. در این روش با توجه به مشخصات دینامیکی سه بازوهای موازی، کنترلگر فوق طراحی گردیده است و نتایج آن نشان میدهد که اگر چه عمل
ردیابی در حالی که سامانه فوق با کنترل پی دی و زمانی که با کنترل لغزشی فازی تطبیقی مقایسه میشود، در هر دو مورد، دقت مناسب است اما عمل حذف اغتشاش در حالت استفاده از کنترل لغزشی فازی تطبیقی بهتر از پی دی میباشد، اما زمانی که پارامترهای کنترلگر ثابت باشد، کنترلگر پی دی عمل ردیابی را بهتر انجام میدهد.
⦁ در سال 2009 کنترل آشوب با استفاده از کنترل لغزشی فازی تطبیقی بر روی سامانه پاندول معکوس معرفی گردید][. در این پژوهش مشخصات همگرایی خطای ردیابی با استفاده از لم باربالت و تئوری لیاپانوف اثبات گردیده است. در این روش مشاهده میشود که تلاش کمتری برای پایدار سازی در یک مسیر پریودیک ناپایدار در مقایسه با یک مسیر مستقیم نیاز است.
⦁ در سال 2009 از کنترل لغزشی فازی تطبیقی برای سامانه های زیر سطحی آبی استفاده شد][. هدف در این پژوهش کم کردن درجه مدل دینامیکی جسم زیر آب و توسعه دادن سامانه کنترل در روش نامتمرکز و چشم پوشی از ترمهای کوپلینگ متقاطع میباشد. کران ها و مشخصات همگرایی در سامانه حلقه بسته با استفاده از تئوری پایداری لیاپانوف و لم باربالت اثبات گردیده است. مشاهده میشود که استفاده از الگوریتم فازی تطبیقی درون کرانهای معین شده باعث بهبودی رابطه بین عملکرد ردیابی و پدیده وزوز صورت میگیرد.
⦁ در سال 2009 طراحی کنترل لغزشی فازی تطبیقی برای سامانه لرنز انجام شد][. در این پژوهش از کنترلگر فوق برای پایدار سازی سامانه لرنز استفاده شده است. از قانون تطبیق برای معین کردن گین کنترل لغزشی استفاده میشود. بر اساس تئوری پایداری لیاپانوف، کنترلگر طراحی شده میتواند سامانه لرنز را به سمت حالت صفر هدایت نماید. همینطور نتایج ، نشاندهنده اثرات مثبت این کنترلگر میباشند.
⦁ در سال 2009 سنکرون کردن جایروهای آشفته غیر خطی نامعلوم با استفاده از کنترل لغزشی فازی تطبیقی معرفی شد][. در این پژوهش از کنترل لغزشی فازی تطبیقی برای سامانه فوق در زمانی که ورودی آن بصورت ناحیه مرده باشد، استفاده شده است. این روش در مقایسه باروشهای قبلی این است که درآن نیاز به داشتن اطلاعات از ساختار جایروها و پارامترهای ناحیه مرده و نواحی دارای عدم قطعیت و اغتشاشات خارجی نیست. نتایج این تحقیق نشان داده است که روش فوق میتواند با دقت اثرات آشوب را خنثی کند.
⦁ در سال 2009 استفاده از کنترل لغزشی فازی تطبیقی بهبود یافته بر پایه الگوریتم ژنتیک برای سامانه های غیر خطی پیشنهاد شد][. نتایج این پژوهش نشان داده است که این روش در مقایسه با حالات بهبود نیافته دارای سرعت بالاتر و تاثیرگزاری بیشتربر روی سامانه های غیر خطی میباشد.
⦁ در سال 2009 کاربرد کنترل لغزشی فازی تطبیقی در حالت مانور چرخشی برای یک فضاپیمای انعطافپذیر برسی گردید][. در این پژوهش در مورد یکی از مشکلات کنترل لغزشی فازی تطبیقی در زمانی که فضاپیما در حالت مانور گردش با زاویه بزرگ میباشد، برسی شده است. از نتایج این پژوهش، مشاهده میشود که القاء تاخیر، اثرات جبرانسازی دارد و استراتژی معرفی شده در اینجا باعث کم شدن ارتعاششات کششی میشود. گام بعدی را میتوان استفاده از قانون کنترل گسسته زمان در نظر گرفت.
⦁ در سال 2010 استفاده از کنترل لغزشی فازی تطبیقی برای محرکهای الکتریکی دارای قدرت زیاد معرفی شد][. در این تحقیق، از روش فوق برای محرکهای الکتریکی که دارای اغتشاش خارجی و عدم قطعیتهای متغیر بازمان استفاده شده است. نتایج نشان میدهد که در اطراف سطح لغزش توانایی خوبی برای حذف اغتشاش و حذف وزوز دارد، اما عمل ردیابی را نمیتواند بخوبی انجام دهد.
⦁ در سال 2010 کاربرد کنترل لغزشی فازی عصبی ویولت تطبیقی برای کنترل یک موتور dc بدون جاروبک برسی گردید][. در کنترل فوق از ترکیب کنترل عصبی و جبرانساز سوئیچی استفاده شده است کنترل عصبی از شبکه عصبی ویولت فازی به عنوان کنترلر اصلی و جبرانساز سوئیچی برای حذف کردن خطای تخمین زده شده در کنترل عصبی میباشد. پایداری کنترلگر با استفاده از تابع لیاپانوف و با تنظیم پارامترهای کنترلگر اثبات شده است.
⦁ در سال 2010 طرح جدید از کنترل چند ورودی-چند خروجی کنترل لغزشی فازی تطبیقی برای بازوهای ربات معرفی گردید][. الگوریتم کنترل فوق بر اساس تئوری پایداری لیاپانوف طراحی گردیده است و قابلیت اعمال به n بازوی ربات با دینامیکهای نامعلوم و عدم قطعیت را دارد. درکل، کنترلگر فوق دارای چهار ویژگی است: 1- خطای ردیابی در نهایت به صفر همگرا میشود. 2- توانایی مهار وزوز و کم کردن تعداد روشهای فازی را دارد. 3- قانون تطبیق نیازی به داشتن پارامترهای دینامیک ندارد. 4- در نهایت کنترلگر فوق قابلیت اعمال به n بازوی ربات دارای دینامیکهای نا مشخص و دارای عدم قطعیت ساختار و اغتشاش خارجی را دارد.
⦁ در سال2010 کاربرد کنترل لغزشی فازی تطبیقی در سامانه سروو موتور دارای آهنربای دائم معرفی شده است][. از این کنترلگر برای کنترل موقعیت یک سروو که دارای مدلی غیر خطی و عدم قطعیت هست استفاده شده است. اعتبار سنجی و امکان سنجی این روش توسط شبیه سازی اثبات شده است. مقایسه کنترلگر فوق با کنترلگر پی آی نشان میدهد که کنترلگر لغزشی فازی تطبیقی در مقابل اغتشاشات بار، پایدار پذیرتر است.
⦁ یکی دیگر از موارد کاربرد کنترل لغزشی فازی تطبیقی برای اجتناب از وضعیتی است که در آن نیازهای ارتباطی شبکه های کامپیوتری بیشتر از توانایی آنها میباشد][.
***ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است***
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است