وبلاگ

توضیح وبلاگ من

مطالعه چگالی تراز هسته ­ای با استفاده از مدل لایه ­ای

چگالی تراز تک ذره­ای،  یکی از عناصر مهم در بررسی ساختار هسته می­باشد، زیرا در تعیین چگالی تراز هسته،  نقش مهمی دارد. در بررسی چگالی تراز تک ذره­ای از روش­های مختلفی استفاده شده­است که از آن جمله به روش­های مکانیک کوانتومی از قبیل روش تابع گرین، روش اسموث و روش جابجایی فاز می­توان اشاره کرد، که در این روش­ها بازه انرژی به دو ناحیه تقسیم می­شود، ناحیه انرژی پیوسته و نواحی انرژی مقید که بیشتر تمرکز روی نواحی پیوسته است.

 

یکی دیگر از روش­ها در بررسی چگالی تراز تک­ذره­ای روش نیمه کلاسیکی می­باشد که در این روش از میدان متوسط برای محاسبات استفاده شده است، که میدان متوسط نوترون شامل جملات پتانسیل هسته­ای و برهمکنش اسپین مدار و برای پروتون علاوه بر این جملات، پتانسیل كولنی را نیز دربرمی­گیرد. تاکنون برای محاسبه چگالی تراز تک ذره­ای با استفاده از روش نیمه کلاسیکی پتانسیل­های مختلفی برای هسته­های كروی و تغییر شكل یافته پیشنهاد شده است که از جمله آنها به پتانسیل چاه مربعی متناهی و نامتناهی، پتانسیل نوسانگر هماهنگ و پتانسیل وودز-ساکسون می­توان اشاره کرد. در روش محاسبه مستقیم پارامتر چگالی تراز با استفاده از این روش، انتخاب پتانسیل میدان میانگین برای بدست آوردن چگالی تراز تک ذره­ای   و مقدار آن در انرژی فرمی نقش تعیین کننده­ای دارد[1].

 

انرژی فرمی بصورت انرژی بالاترین حالت تک ذره­ای پرشده در حالت پایه هسته تعریف می­شود. مقدار انرژی فرمی برای پروتون و نوترون متفاوت است[2].

 

در هسته­های سنگین به دلیل نزدیک شدن ترازها به همدیگر و همپوشانی­های آنها تمایز بین ترازها سخت می­باشد و با افزایش انرژی، ترازها بیشتر بهم نزدیک می­شوند. به همین دلیل چگالی تراز برای هسته­های سنگین دارای اهمیت قابل توجهی است. چگالی تراز یکی از پارامترهای مهم ساختار هسته به حساب می­آید که با استفاده از آن سایر پارامترهای ترمودینامیکی هسته از قبیل دما، آنتروپی، فشار و ظرفیت گرمایی را می­توان بدست آورد[3,4].

 

بطوركلی برای محاسبه چگالی تراز از دو روش مستقیم وغیر مستقیم استفاده می­شود. در روش غیرمستقیم با محاسبه آنتروپی و تابع پارش هسته و با استفاده از رابطه بین آنتروپی و چگالی تراز هسته­ای، چگالی تراز محاسبه می­شود. به عنوان مثال به مدل­های آماری BCS [3] ، SMMC [4] و SPA+RPA [5] می­توان اشاره کرد[5-7].

 

در محاسبه چگالی تراز بطور مستقیم از روش­های آماری که به صورت تئوری ارائه می­شوند استفاده می­شود. به عنوان مثال به مدل­های آماری CTM [6] ، FGM [7] ، BSFGM [8] و GSM [9] می توان اشاره کرد. در این مدل­ها پارامتر چگالی تراز بطور تئوری و نیمه تجربی محاسبه می­شود. در بسیاری از مطالعات مربوط به محاسبه برهمکنش­های هسته­ای، فرمول­های تحلیلی مربوط به چگالی تراز ترجیح داده می­شوند[3,8-10].

 

در این مدل­ها پارامترهای چگالی تراز بطور تئوری و نیمه تجربی محاسبه می­شوند. در بسیاری از مطالعات مربوط به محاسبه برهمکنش­های هسته­ای، فرمول­های تحلیلی مربوط به چگالی تراز ارجعیت دارند.

 

در مدل دمای ثابت،CTM  بازه انرژی به دو بخش تقسیم می­شود که در بخش انرژی­های پایین از ثابت بودن دما می­توان استفاده کرد و در انرژی­های بالا مدل گاز فرمی مورد استفاده قرار می­گیرد. مسئله اصلی در این مدل ایجاد ارتباط بین نواحی کم انرژی و نواحی انرژی بالاست. این مدل پدیده­شناختی براساس فرمول بت  که در آن برهمکنش­های هسته­ای لحاظ نمی­شود، بنا شده است[11].

 

ساده­ترین بیان تحلیلی برای بررسی چگالی تراز مدل گاز فرمی است که در آن هسته­ها بدون برهمکنش در نظر گرفته شده واز اثرات تجمعی صرفنظر می­شود. مدل  BSFGMبا اعمال برخی اصلاحات در مدل گاز فرمی و با درنظرگرفتن جفت شدگی­های نوکلئونی در بر همکنش­های هسته­ای، ارائه شده است، این مدل در همه­ی انرژی­ها برای بررسی چگالی تراز مورد استفاده قرار می­گیرد.

 

پروژه دانشگاهی

 

 

در مدل BSFGM چگالی تراز هسته­ای دارای دو پارامتر چگالی تراز تک ذره­ای و انرژی جابجایی برانگیختگی است. معمولا این پارامترها به عنوان پارامترهای قابل تنظیم از طریق برازش داده­های تجربی تعیین می­شوند. اگرچه برای محاسبه پارامتر چگالی تراز، به جز برازش از مدل­های مختلف هسته­ ای مثل مدل قطره مایع، مدل لایه­ای و رابطه نیمه تجربی نیز می­توان استفاده کرد و این پارامتر را بطور مستقیم محاسبه نمود.

 

1-1- مدل های هسته ای

 

مدل­های هسته­ای تقریب­ها و فرض­هایی هستند که برای شناخت ساختار هسته و نیروی هسته­ای و بر اساس شواهد تجربی معرفی می­شوند و به دو دسته تقسیم می­شود مدل­های نیمه کلاسیکی (Semi-classical models) یا مدل­های ذره­ای مانند مدل قطره مایع (Liquid drop model) و مدل­های کوانتومی (quantum mechanics models) مثل مدل لایه­ای (Shell model).

 

2-1- مدل قطره مایع

 

با توجه به اینکه در هسته هر نوکلئون با نوکلئون­های مجاور خود برهمکنش می­کند و به هر نوکلئون از اطراف توسط نوکلئون­های مجاور نیرو وارد می­شود، در نتیجه نوکلئون­های داخل هسته را می توان در حال حرکت فرض کرد. در ضمن نیروی هسته­ای ضمن اینکه جاذبه است، دارای یک جمله دافعه نیز می­باشد که نوکلئون­ها را در یک فاصله معینی از همدیگر نگه می دارد. با توجه به اینکه وضعیت نوکلئون­ها در هسته مانند وضعیت مولکول­ها در مایع می­باشد ماده هسته­ای را می­توان سیال هسته­ای نامید. هر نوکلئونی که در نزدیکی لایه­ی هسته­ای قرار دارد نیروی خالصی به سمت داخل احساس می­کند به طوری که موجب می­شود سطح خارجی خود را به کمترین مقدار سازگار با حجم خود تغییر دهد. شکل هندسی که این سازگاری را دارد کروی است. بنابراین شکل هسته را بصورت کروی می­توان فرض کرد. با توجه به این توضیحات می­توان هسته را مانند یک قطره مایع در نظر گرفت.

 

انواع مدل­های تجمعی هسته­ای (Collective model) همانند مدل دورانی (Rotational model) و مدل ارتعاشی (Vibrational model) در محاسبات از مدل قطره مایعی استفاده می­کنند. با توجه به این اصل که دوران و ارتعاش هسته بطور کامل مشابه دوران و ارتعاش یک قطره مایع معلق می­باشد.

 

3-1- مدل لایه ای

 

مدل لایه­ای یکی از مدل­های هسته­ای به حساب می­آید که با در نظر گرفتن پتانسیل میدان متوسط و پتانسیل ناشی از برهمکنش نوکلئون­ها، تراز­های نوترون و پروتون هسته را با دقت بالایی نتیجه می­دهد. فرض اساسی در مدل لایه­ای این است که علی­رغم جاذبه شدید بین نوکلئون­ها که انرژی بستگی کل هسته را ایجاد می­کند حرکت هر نوکلئون در واقع مستقل از نوکلئون­های دیگر است، اگر تمام جفت شدگی­های بین نوکلئونی یا تمام برهمکنش­های زوجیت نادیده گرفته شوند، مدل لایه­ای را مدل لایه­ای تک ذره­ای می­گویند. بنابراین در مدل لایه­ای تک ذره­ای هر نوکلئون در پتانسیل متوسط یکسان با سایر نوکلئون­ها حرکت می­کند. بنابراین انتخاب یک پتانسیل هسته­ای مناسب مهم است. پتانسیل هسته­ای مناسبی که بتوان نوکلئون­ها را تحت آن پتانسیل در ترازهای انرژی قرار داد بایستی بتوانند نظام هسته را توجیه کند و با آزمایش و تئوری هماهنگ باشد. پتانسیل­های هسته­ای معرفی شده عبارتند از پتانسیل کروی، پتانسیل چاه مربعی متناهی و نامتناهی، پتانسیل نوسانگر هماهنگ و پتانسیل وودز-ساکسون.

 

با اعمال پتانسیل چاه مربعی و نوسانگر هماهنگ ترازها به صورت تبهگن بدست می­آیند. پتانسیل شعاعی وودز-ساكسون به همراه پتانسیل ناشی از برهمکنش اسپین مدار ترازهای هسته­ای و اعداد جادویی را که نشان دهنده لایه­های بسته هسته­ای هستند به درستی نتیجه می­دهد[13].

 

با حل معادله شرودینگر برای پتانسیل­های میدان میانگین، بدون در نظر گرفتن جفت­شدگی نوکلئون­ها، ترازهای انرژی و معادله موج نوکلئونی بدست می­آید. ترازهای انرژی تک-نوکلئونی نوترونی و پروتونی بعنوان یك پارامتر اساسی در تعیین پارامترهای ترمودینامیكی هسته از قبیل دما، آنتروپی، فشار و ظرفیت گرمایی نقش ایفا می­کنند. چگالی تراز هسته­ای بصورت تعداد ترازهای هسته در واحد انرژی برانگیختگی مؤثر تعریف می­شود.

 

در فصل دوم این پژوهش، به بررسی چگالی تراز تک ذره­ای و روش­های مختلفی که در بررسی چگالی تراز تک ذره­ای دارای اهمیت اند پرداخته ایم. در فصل سوم چگالی تراز هسته­ای و مدل­هایی که در آنها پارامترهای چگالی تراز بطور تئوری و نیمه تجربی محاسبه می­شوند معرفی شده­اند و همچنین شیوه­های برازش و اثرات تجمعی نیز ارائه شده­اند. در نهایت در فصل چهارم پارامتر چگالی تراز در مدل BSFGM بصورت تابعی از چگالی تراز تك ذره­ای با استفاده از مدل نیمه كلاسیكی برای پتانسیل­های نوسانگر هماهنگ، چاه پتانسیل مربعی و پتانسیل وودز-ساکسون برای تعدادی از هسته­های سبک، متوسط و سنگین محاسبه شده اند و نتایج بدست آمده با نتایج سایر روش­ها مقایسه شده است.

 

1) Smooth

 

2) Woods_Saxon

 

3) Bardeen-Cooper-Schrieffer

 

4) Shell Model Monte Carlo

 

5) Static Path Approximation plus Random Phase Approximation

 

6) Constant Temperature Model

 

7) Fermi Gas Model

 

8) Back-shifted Fermi Gas Model

 

9) Generalized Superfluid Model

 

10) Phenomenological

 

11) Bethe

بررسی موانع صادرات مرکباتو ارائه راه کارهایی برای افزایش صادرات

. 29

 

1-3- جامعه آماری:. 29

 

2-3 فرضیات تحقیق. 30

 

3-3 روشهای جمع آوری اطلاعات. 30

 

4-3 پرسشنامه:. 30

 

فصل چهارم – تجزیه و تحلیل یافته ها. 32

 

فصل پنجم – نتیجه گیری و پیشنهادات. 35

 

منابع و مأخذ. 50

 

پرسشنامه:. 50

 

 

 

1-1

 

کاهش درآمد حاصل از صدور نفت و نوسانات شدید آن، افزایش جمعیت کشور، کاهش قدرت خرید، درآمدهای نفتی در نتیجه به هم خوردن رابطه مبادله به نفع کشوری صنعتی و پیشرفته در راه تجارت با کشورهای جهان سوم و از همه مهتر پایان پذیر بودن منابع طبیعی و از جمله نفت باید زنگ خطر را برای ما و خصوصاً برنامه ریزان و سیاست گذاران اقتصادی کشور به صدا در آورده و ما را به این باور رسانده باشد که توسعه صادرات غیرنفتی و رهایی یافتن از اقتصاد تک محصولی متکی به درآمد های نفتی ضرورتی اجتناب ناپذیر است. امروز توسعه صادرات غیرنفتی تنها افزایش درآمدهای ارزی از طریق صدور انواع کالاهای ساخته شده و خدمات محدود نمی شود. بلکه توسعه صادرات نقش مهمتری را به عنوان یک استراتژی رشد و توسعه اقتصادی به عهده دارد. در اجرای استراتژی توسعه صادرات بخشهای مختلف اقتصادی شامل صنعت، معدن، خدمات، بهداشت، کشاورزی، و غیره…. مورد توجه قرار می گیرد.

عکس مرتبط با اقتصاد

دانلود مقالات

 

با توجه به نکته که کشورمان به دلیل شرایط خاص اقلیمی و جغرافیایی جزء محدود کشورهای دنیا است که قابلیت بالایی در تولید محصولات کشاورزی داراست و از نظر تنوع در بخش باغداری و محصولات باغی سومین کشور دنیا پس از کشورهای چین (اول) و ترکیه و آمریکا (مشترکاً دوم) می باشد. می توان به عنوان بخشی از استراتژیهای توسعه صادرات کشور به بخش کشاورزی و باغداری معطوف شد و با تولید انواع محصولات کشاورزی و باغی علاوه بر تامین نیازهای داخل به صدور این محصولات و درآمدی که ارزی حاصل از آن چشم داشت.

 

2-1 تعریف موضوع

 

موضوعی که در این تحقیق مورد بررسی قرار خواهد گرفت «بررسی موانع صادرات مرکبات کشور و ارائه راهکارهایی برای افزایش صادرات آنها می باشد» کشور ما سرزمین پهناوریست که از شرایط آب و هوایی بسیاری متنوعی برخوردار است. همین شرایط آب و هوایی و اقلیمی متنوع زمینه بسیار مساعدی را برای تولید انواع و اقسام محصولات کشاورزی فراهم آورده است. بخشی از این تولیدات به مصرف داخلی می رسد و بخش قابل توجهی از آن نیز قابل صدور به سایر کشورهای دنیا است.

 

مرکبات نیز به دلیل همین شرایط مساعد آب و هوایی و خاک مناسب در اغلب نقاط کشور به ویژه شمال و جنوب کشور قابل کشت و پرورش است و ذکر این نکته ضروری است که تولید فعلی مرکبات کشور در تولید این محصولات می توان با افزایش سطح زیر کشت و در نتیجه تولید آن به افزایش صادرات آن امیدوار بوده پس با توجه به ظرفیت موجود صاردات این محصولات می توان مقدار قابل توجهی ارز وارد سیستم اقتصادی کشور کرد و با توجه به اینکه در برنامه های اقتصادی دولت برای صادرات محصولات غیرنفتی اهمیت خاصی قائلند. لذا بررسی و تخصص پیرامون این موضوع می تواند راهگشا باشد. در این راستا تحقیق حاضر به بررسی و تبیین مواننع موثر بر افزایش صادرات مرکبات می پردازد و تلاش بر این است که مولفه ی مهمی نظیرتسهیلات و نگهداری انبار سیستم بسته بندی، سیستم حمل و نقل و انجام بازاریابی به طور صحیح و میزان اهمیت و تاثیر هر یک از این چها مولفه در افزایش صادرات مرکبات مورد بررسی و شناسایی قرار گیرد.

 

3-1 اهمیت موضوع

 

صادرات فعالیتی بسیار پیچیده و دارای ظرافت های خاصی خویش است. توسعه صادرات امری آسان نیست. برای فروش بیشتر کالا به خریداران شرایط و عمل مساعد بسیار لازم است نه فقط جلب رضایت مصرف کننده خارجی نسبت به کیفیت قیمت، شرایط عرضه، بازار رسانی و خدمات پس از فروش کالا لازم است. بلکه با توجه به این نکته ضروری است که کشور با رقبای سرسخت قدرتمند در این زمینه روبرو است. بدون مطالعات مشکلات و تنگناها و بررسی تحقیق مستمر پیرامون عوامل موثر در افزایش صادرات توسعه صادرات غیرنفتی ممکن نیست بسیاری از کشورهای توسعه یافته و حتی در حال توسعه دنیا مبالغ هنگفتی را به انجام پژوهشهای علمی به تخصیص می دهند.

 

در راه صادرات محصولات کشاورزی و از جمله مرکبات که ظرفیت بالایی برای تولید و صادرات آن در کشور وجود دارد موانع بسیاری پیش روی ماست. تولید فعلی مرکبات کشور سالانه بیش از سه میلیون و هفتصد هزار تن است و بررسی انجام شده نشان می دهد که از این مقدار 700 هزار تن حدود 20% آن قابلیت صدور دارد. اما میزان فعلی صادرات این محصول در حدود 70 هزار تن در سال است یعنی در حدود 10% از ظرفیت صادراتی موجود که این رقم بسیار ناچیزی است فراوان مشاهده شده است که کشور عین که تولید بسیار ناچیزی نسبت به کشور ما دراد چندین برابر ما صادرات مرکبات درند.

ارزیابی میزان مس، روی و منگنز در سرم، كبد و استخوان موشهای صحرایی نر تغذیه …

آهن یك ماده ی معدنی است كه برای فعالیت­های فیزیولوژیكی بدن ضروری بوده و جزء با اهمیت پروتئین­هایی است كه در انتقال اكسیژن نقش دارند (هموگلوبین و میوگلوبین). همچنین وجود آن برای انجام واكنش­های آنزیمی در بافت­های مختلف، رشد و نمو سلول­ها و تمایز سلولی لازم است. كمبود آهن یكی از شایع­ترین كمبودهای تغذیه­ای در سرتاسر جهان است از علائم كمبود آهن
می­توان به كم خونی، ریزش مو، بی قراری، ضعف و خستگی، زردی، كمرنگ شدن غشاهای مخاطی، كاهش بازدهی، كاهش عملكرد ایمنی و افزایش حساسیت به بیماری و … اشاره كرد. بهترین راه برای پیشگیری از كمبود آهن استفاده از منابع غذایی حاوی آن یا ماده غذایی غنی شده با آهن است. در ایران و بویژه استان فارس كمبود آهن كمبود اول مواد مغذی است. چون غذای اكثر خانواده­های ایرانی را نان تشكیل می دهد و بیشترین انرژی مورد نیاز خود را از طریق غلات بویژه نان تأمین
می­كنند. با توجه به محدودیت منابع و عدم امكان تأمین مواد مغذی لازم است برای رفع نیازهای تغذیه­ای مردم از ساده­ترین روش­ها برای تأمین مواد مورد نیاز آنها استفاده گردد. یكی از این راهها تهیه نان­های مخصوص و غنی شده با پروتئین، ویتامین­ها و املاح می­باشد. لذا هدف از این تحقیق غنی سازی نان با آهن و برآورد میزان جذب آن در موش­های صحرایی بوده تا در صورت اخذ نتیجه­ی مثبت بتوان به عنوان یك راه ساده، ارزان و عملی در جهت پیشگیری از كمبود آهن مورد استفاده قرار داد. ‍

 

محمود و همكاران (2011) در غنی سازی پنیر پروسس با آهن به میزان 3 و 5 برابر نیاز معمول

پروژه دانشگاهی

 

موش­های صحرایی و تغذیه آنها به مدت یك ماه گزارش كردند كه میزان هموگلوبین و آهن سرم در آنها افزایش و ظرفیت كلی اتصال آهن (TIBC) و كلسیم یونیزه و كلسیم مجموع سرم كاهش یافته اما هیچكدام از این افزایش یا كاهش­ها معنادار نبود.

 

احمد و همكاران (2011) در تغذیه ی موش­های صحرایی ماده با نان غنی شده با كلسیم، آهن و روی به میزان سه برابر مورد نیاز و در یك دوره­ی 28 روزه مشاهده كردند كه جذب هر سه ماده در مقایسه با گروه كنترل افزایش می­یابد. در گروه­های درمانی وزن بدن و سطح آهن و روی در پلاسما، كبد و استخوان ران به طور معناداری بالاتر بود اما در مورد كلسیم تغییر معناداری در سطح آن در پلاسما و كبد مشاهده نگردید.

 

در بررسی نالپا و همكاران (2012) مشخص گردید كه در نان­های پروبیوتیك حاوی بیفیدوباكتریوم بیفیدوم میزان آهن و كلسیم آزاد شده از نان كاهش می­یابد لذا چنین نان­های مفیدی بایستی از لحاظ مواد معدنی تنظیم گردند تا مصرف آنها منجر به كمبود مواد معدنی نشوند.

 

در مطالعه سویج و نسبرگ و همكاران (2008) با غنی كردن آرد نان قهوه­ای با نمك سدیم و آهن EDTA و فومارات آهن حداكثر به میزان   kg ̸ mg 35 و مصرف 4 برش نان روزانه به مدت 34 هفته در كودكان 6 تا 11 سال عنوان نمودند كه غلظت هموگلوبین، درصد اشباع ترانسفرین، فریتین و آهن سرم و میزان گیرنده­های ترانسفرین در مقایسه با گروه كنترل تفاوت معناداری پیدا نكرد.

 

نتایج بررسی شیخ الاسلامی و جمالیان (1382) نشان داد كه میزان اسید فیتیك در نمونه­های آرد مورد استفاده در تهیه نان­ها زیاد است (به طور میانگین 37/570 میلی گرم در 100 گرم) و با توجه به روش­های تهیه­ی نان در اغلب نقاط كشور تخمیر و پخت نان نمی­تواند كمك چندانی به كاهش اسیدفیتیك موجود در نان كند در نتیجه میزان اسید فیتیك در نان تولیدی نیز بالا است (به طور میانگین 31/347 میلی گرم در 100 گرم). بالا بودن اسید فیتیك می­تواند جذب آهن را در بدن مختل و منجر به كمبود این عنصر گردد.

 

استفاده از جوش شیرین به عنوان خمیر مایه علیرغم اینكه توسط وزارت بهداشت به طور رسمی در فرایند تولید نان ممنوع اعلام شده ولی مطالعه­ی كمانی و همكاران (1389) نشان داد كه این ماده همچنان در فرایند تهیه نان مصرف می شود و مصرف جوش شیرین در نانوایی­های لواش رایج تر از نان بربری، تافتون و سنگگ می­باشد. بقایای جوش شیرین موجود در نان موجب ناراحتی­های گوارشی و مانع جذب كلسیم، آهن و سایر عناصر ضروری در دستگاه گوارش می­شود.

بررسی وضعیت فعلی مدیریت بازار فیروزه صادراتی استان خراسان و ارائه راهکارههای مناسب جهت …

قدیمی ترین اطلاعی كه از فیروزه در دست داریم به 3400 سال پیش از میلاد مسیح مربوط است و نوشته‌اند كه فراعنه مصر این سنگ زیبا را از معادن شبه جزیره سینا استخراج كرده و در زینت آلات خود بكار می‌بردند و بدین گونه شاید استخراج فیروزه قدیمی ترین استخراج كانهای صخره ای در ستاریخ باشد ولی از همان زمانهای باستان بهترین و مطلوبترین فیروزه در معادن ایران بدست می‌آمده كه از زمانهای بسیار قدیم آن را استخراج و صادر می‌كرده‌اند و چون این سنگ بهادار از راه تركیه به اروپا وارد و شناخته گردیده است بدان سبب اروپاییان آن را، تركواز (Turquoise) یعنی تركی می‌نامند.

 

نام نیشابور با نام فیروزه همزاد است و در مقام تعریف، نیشابور را شهر فیروزه‌های درشت، شهری با سنگهای فیروزه و … می‌گویند. بشهادت گوهر شناسان دور و نزدیك، فیروزه نیشابور در روی زمین مقام اول را دارد. این سنگ گرانبها و پر ارزش كه زینت بخش گنجینه‌های گرانبهای ثروتمندان جهان و خزاین ممالك می‌باشد همواره توجه جهانیان را به خود جلب كرده است.

 

از كتیبه كاخ داریوش در شوش معلوم می‌گردد كه در آن تاریخ فیروزه «اخشائین» نامیده می‌شده و از خوارزم برای زینت آلات كاخ وارد شده بود. نمونه‌هایی كه در اثر كاوشهای باستان شناسی بدست آمده نشان می‌دهد كه فیروزه در هزاره دوم قبل از میلاد در ایران بعنوان سنگ زینتی مورد استفاده قرار می‌گرفته است. در دوره ساسانیان از فیروزه غیر از انگشتر و گوشواره و غیره ظروفی برای دربار سلاطین تهیه می‌شده است.

 

از مطالب فوق بخوبی می‌توان به مرغوبیت فیروزه نیشابور و قدمت استخراج و تراش آن و دیرینه بودن هنر ساخت زیور آلات فیروزه ای در ایران پی برد بطوریكه فیروزه نیشابور حتی به كشورهای اروپایی هم صادر می‌شده است. اما علی رغم این پیشینه افتخار آمیز، متأسفانه در حال حاضر فیروزه تراشی و صادرات فیروزه از وضعیت مطلوبی برخوردار نیست و بر اساس مصاحبه‌های انجام شده با فیروزه تراشان و صادركنندگان مصنوعات فیروزه ای، هم اكنون بخش قابل ملاحظه ای از فیروزه‌های تراشیده شده در بازار داخلی را فیروزه‌های شیمیایی و یا فیروزه‌های آمریكایی كه بصورت قاچاق وارد كشور می‌گردد، تشكیل می‌دهد. با وجود چنین مسأله نگران كننده ای تاكنون تحقیق علمی برای پاسخگویی به سؤالات زیر انجام نشده است:

 

 

    • وضعیت فعلی مدیریت بازار فیروزه صادراتی استان خراسان چگونه است؟

 

  • راهكارهای مناسب جهت افزایش صادرات مصنوعات فیروزه ای كدامند؟

 

امید است كه این تحقیق بتواند از طریق پاسخگویی به سؤالات فوق در جهت آشنایی بیشتر با صنعت فیروزه استان خراسان و رفع موانع و مشكلات آن مفید واقع شده، نقش كوچكی در تحقق آرمان ملی اقتصاد بدون نفت ایفا نماید.

پروژه دانشگاهی

 

عکس مرتبط با اقتصاد

3- ضرورت انجام تحقیق

 

با توجه به اینكه فیروزه تراشی یكی از صنایع دستی مهم استان خراسان محسوب می‌شود و برای پی بردن به ضرورت انجام این تحقیق، شایسته است كه به اختصار اهمیت صنایع دستی را از ابعاد مختلف بررسی نماییم:

 

 

    • اشتغال زایی: اشتغال زایی صنایع دستی با توجه به تعداد قابل توجه شاغلین در رشته‌های گوناگون صنایع دستی و سنتی از مهمترین عوامل مؤثر توسعه اقتصادی به حساب می‌آید.

 

    • ارزش افزوده: تولیدات صنایع دستی، از ابعاد مختلف بخصوص در رابطه با صادرات كشور از ویژگی خاصی در زمینه‌های اقتصادی ارز آفرینی و تولید درآمد ملی برخوردار است. ارزش افزوده اینگونه تولیدات موجب توصیه اكید در زمینه توسعه و گسترش آن می‌گردد.

 

    • عدم وابستگی صنایع دستی: صنایع دستی بدلی عدم وابستگی به مواد اولیه خارجی و اتكا به تولیدات داخلی، از ویژگی بارزی برخوردار است و این امر در اكثر رشته‌های آن بوضوح دیده می‌شود. البته در بعضی موارد نادر، به میزان ناچیزی از مواد اولیه خارجی وابسته می‌گردد. در مجموع توسعه و گسترش صنایع دستی گام مفیدی در خود كفایی نسبی كشور به حساب می‌آید.

 

  • مظاهر فرهنگی صنایع دستی: اصالتهای فرهنگی صنایع دستی، مبین ارزشها و هویت سنتی جامعه بوده و اشاعه اینگونه صنایع در گسترش و تعمیم هویت فرهنگی جامعه بسیار با اهمیت می‌باشد.

 

علاوه بر موارد فوق می‌توان گفت كه امروزه استخراج و فرآوری سنگهای قیمتی، بخش مهمی از اقتصاد كشورهایی مانند: برزیل، كلمبیا، افریقای جنوبی، استرالیا، برمه، سریلانكا، تایلند، چین، هند، كشورهای اروپایی، آمریكا و بسیاری از دیگر كشورها را تشكیل می‌دهد. بصورتیكه حذف این صنعت برای تعدادی از این كشورها حكم حذف صنعت نفت برای ایران را دارد.

 

ارزش تولید جهانی سنگهای قیمتی پس از فرآوری در سال 1995 میلادی به بیش از یكصد میلیاد دلار رسید. امروزه اهمیت بازار جهانی سنگهای قیمتی به حدی است كه در اكثر كشورهای جهان متخصصان این رشته در محافل علمی-دانشگاهی ویژه ای تحت نام جمولوژی (Gemology) یا گوهر شناسی تربیت می‌شوند. در یك مقایسه اگر ارزش یك نگین زمرد با كیفیت عالی به وزن 60 قیراط (12 گرم) و به ارزش تقریبی یك میلیون دلار را با قیمت 12 گرم طلا به ارزش تقریبی یكصد دلار بسنجیم در می‌یابیم كه چرا امروزه اكثر سرمایه گذاران كوچك و بزرگ در جهان، خرید سنگهای قیمتی را به خرید فلزات قیمتی ترجیح می‌دهند.

 

اما متأسفانه در كشور ما بهره برداری از معدن فیروزه نیشابور از وضعیت مطلوبی برخوردار نمی باشد. زیرا مطابق اطلاعات دریافتی از اداره كل معادن و فلزات استان خراسان، میزان استخراج مجاز سالیانه این معدن 37000 كیلوگرم می‌باشد ولی در سال 1377 میزان استخراج،13500 كیلوگرم بوده است و بناچار فیروزه تراشان برای تداوم فعالیت خود، به فیروزه‌های وارداتی روی آورده‌اند و اگر این روند به همین صورت ادامه پیدا كند دور از انتظار نخواهد بود كه در آینده ای نه چندان دور دستیابی به فیروزه مرغوب و معروف نیشابور به آرزویی برای فیروزه تراشان و خریداران داخلی و خارجی تبدیل شود.

بررسی ساختار هسته ها از دیدگاه مدل شبه کوارکی

 

 

 

 

در این فصل ابتدا توضیحی در مورد ذرات تشکیل دهنده جهان و خصوصیات آنها داده شده و در انتها به صورت مختصر مطالبی که در فصول بعدی مورد بحث قرارگرفته آورده شده است.

 

نمودار شکل (1-1)، یک خط زمانی از ابتدای جهان، که به اصطلاح «مهبانگ[1]»  نامیده می­شود، تا به حال را نشان می­دهد و می­رساند که چگونه و طی چه مراحلی جهان سرد شده تا به دنیای کنونی رسیده­ایم. با نگاهی به اولین لحظات جهان، مشاهده می­شود که در ده میکرو­ثانیه اول بعد از مهبانگ و در دماهای بالاتر از  درجه کلوین، حالتی از ماده شامل کوارک­ها و گلوئون­ها به صورت یک پلاسمای کوارک- گلوئونی به نام «پلاسمای کوارک- گلوئونی[2]» (QGP) وجود داشته است. این حالت ناپایدار کوارک- گلوئونی در مدت بسیار کوتاهی سرد شده و پروتون­ها و نوترون­ها (هادرون­سازی[3])، سپس هسته­ها (هسته­سازی[4]) و به دنبال آن اتم­ها ایجاد شده­اند. در نهایت این اتم­ها در کنار یکدیگر مولکول­ها را تشکیل داده و دنیای کنونی را که در آن زندگی می­کنیم به وجود آورده­اند.

 

امروزه تحقیقات فیزیک ذرات نمایانگر جاه­طلبانه­­ترین و هماهنگ­ترین تلاش انسان برای پاسخ به این سوال است که جهان از چه ساخته شده است؟ به همین منظور ابتدا مروری بر فیزیک ذرات خواهیم داشت [2،1].

 

 

با نگاه به تاریخ می­توان آغاز فیزیک ذرات را در مورد ساختار بنیادی مواد به مدل آناکسیمنس میلتوس[1] نسبت داد. در مدل آناکسیمنس، چهار عنصر آب، آتش، هوا و خاک به عنوان ساختار بنیادی جهان در نظر گرفته شده است. 25 قرن بعد، مندلیف[2]  جدول تناوبی شامل حداقل بیش از یکصد عنصر شیمیایی را پیشنهاد کرد. جدول مندلیف پیچیده­تر از آن است که بتواند راه­حل نهایی و اساسی را ارائه دهد. تعدد عناصر و ترتیب ظاهری هماهنگ شدن در جدول، قویاً ساختاری درونی را پیشنهاد می­کند. امروزه می­دانیم که عناصر موجود در جدول مندلیف در حقیقت از الکترون­ها و نوکلئون­های بنیادی­تر ساخته شده­اند. جدول (1-1) پاسخ جاری ما به این سوال که جهان از چه چیزی ساخته شده است؟ می­باشد. این پاسخ، همان سادگی مفهومی راه­حل آناکسیمنس را دارد، ولی درست مثل پیشنهاد مندلیف حقیقتاً کمی و سازگار با واقعیات تجربی است. پاسخ جدول (1-1) در حقیقت از یک سری از آزمایش­ها، شامل زمینه­های مختلف فیزیک اتمی، فیزیک هسته­ای، تابش­های کیهانی و فیزیک انرژی­های بالا، بیرون کشیده شده است. این تلاش­های تجربی از ابتدای قرن کنونی آغاز شده، ولی یک سری از کشفیات بسیار مهم در دهه 1970 بود که ما را مستقیماً به دنیای کوارک­ها و لپتون­ها و بوزون­های پیمانه­ای رهنمون ساخت.

 

قانونمندی­های جدول مندلیف راهی بود به سوی هسته­ها و ذراتی به نام پروتون­ها و نوترون­ها (که مجموعاً به نام نوکلئون­ها خوانده می­شوند) که با نیروی قوی هسته­ای به هم چسبیده­اند تا هسته­ها را تشکیل دهند. اینها از طریق نیروی الکترومغناطیسی با الکترون­ها جفت شده­اند تا اتم­ها و عناصر شیمیایی را ایجاد کنند. تبدیل نوترون­ها به پروتون­ها از طریق برهم­کنش ضعیف مسئول واپاشی بتایی هسته­ها و همچنین واپاشی آرام نوترون به پروتون به همراه یک الکترون و یک پادنوترینو می­باشد. مشخص شد که نوترون­ها و پروتون­ها تنها نیستند، بلکه سبک­ترین ذرات در یک طیف از حالات فرمیونی به نام باریون­ها هستند که در برهم­کنش قوی شرکت می­کنند. به طور مشابه بوزون­های شرکت کننده در برهم­کنش­های قوی  به نام مزون­ها، نیز کشف شدند که پایون سبک­ترین آنها بود. فرمیون­ها (بوزون­ها) به حالات ذراتی با اسپین  دلالت می­کند که n عدد صحیح فرد (زوج) است. تمام ذراتی که در برهم­کنش­های قوی شرکت می­کنند، مانند باریون­ها و مزون­ها، مجموعاً به نام “هادرون­ها” خوانده می­شوند.

 

این تعدد ذرات به اصطلاح بنیادی به صورتی نسبتاً سر راست، مثل بحث­هایی در مورد اتم­های مرکب بر اساس جدول مندلیف، راه را به سمت ساختار داخلی نوکلئون­ها، یعنی کوارک­ها، هموار کرد. همچنین مزون پایون و تمام هادرون­های دیگر از کوارک ساخته شده­اند. الکترون و

پروژه دانشگاهی

 نوترینو، نیروی قوی هسته­ای را حس نمی­کنند و بنابراین هادرون نیستند. آنها گروه مجزایی از ذرات را به نام لپتون­ها  تشکیل می­دهند. نوترینوها تنها در برهم­کنش ضعیف شرکت می­کنند، اما الکترون که بار نیز دارد می­تواند برهم­کنش الکترومغناطیسی را نیز حس کند. لپتون­ها مثل باریون­ها مرکب نیستند و بنابراین مستقیماً به همراه کوارک­ها به عنوان ذرات بنیادی نقطه­ای در جدول (1-1) وارد شده­اند.

 

پایون، نوترون، پروتون، … به عنوان نمایش دیگری از ساختارهای حالت مقید موجود در جهانی است که از کوارک­ها و لپتون­ها ساخته شده­اند و به جمع هسته­ها و اتم­ها می­پیوندند. لذا نیاز به یک چارچوب نظری بود تا بتواند این پیشرفت­­های مفهومی را به یک طرح محاسباتی کمی برگرداند. به طور واضح، معادله شرودینگر نمی­توانست خلق و نابودی ذرات را، به آن گونه که در واپاشی نوترون مشاهده می­شود، توصیف کند و بعلاوه قادر به توصیف ذرات نسبیتی به صورتی که در آزمایش­های اشعه کیهانی معمولی با آن مواجهیم، نمی­باشد. در اوایل دهه 1930 نظریه­ای برای توصیف برهم­کنش الکترومغناطیسی الکترون­ها و فوتون­ها به نام الکترودینامیک کوانتومی (QED) ارائه شد که شامل این ویژگی­ها بود یعنی هم کوانتومی بود و هم از نظر نسبیتی هموردا می­شد. هر چند که وارد کردن کوارک­ها مثل لپتون­ها در برهم­کنش­های دیگر غیر از الکترومغناطیس ضروری شده است. نظریه میدان­های کوانتومی نسبیتی، که الکترودینامیک کوانتومی نمونه اولیه آن به شمار می­رود، به عنوان چارچوب محاسباتی برای ذرات بنیادی بدون تغییر مانده است. اما تحولات بعدی در فیزیک ذرات بنیادی، حضور رده ویژه­ای از چنین نظریه­هایی به نام نظریه­های پیمانه­ای را آشکار ساخته است.

 

 

الکترودینامیک کوانتومی ساده­ترین مثال از چنین نظریه­ای می­باشد. تصور می­شود برهم­کنش­های ضعیف و قوی کوارک­ها و لپتون­ها، هر دو به وسیله نظریه­های پیمانه­ای قابل توصیف باشند. مدل وحدت یافته الکتروضعیف[1] و کرومودینامیک کوانتومی (QCD)، اثر متقابل مدل­ها و ایده­ها که در چارچوب کلی نظریه­های پیمانه­ای فرمولبندی شده­اند، به همراه اطلاعات تجربی جدید، زمینه مساعدی را برای پیشرفت­های مکرر فراهم ساخته­اند.

 

شواهد فراوانی دال بر اینکه نوکلئون­ها از ذراتی به نام کوارک تشکیل شده­اند، وجود دارد. باریون­ها حالت مقید سه کوارک می­باشند و مزون­ها از یک کوارک و یک پاد کوارک تشکیل یافته­اند. بنابراین طرح کوارکی بطور طبیعی با تقسیم هادرون­ها به دو دسته باریون­ها (حالت فرمیونی سه کوارکی) و مزون­ها (حالت بوزونی کوارک-پادکوارک) مطابقت دارد.

 

یک موفقیت آنی مدل کوارکی در طبیعت نظری آن مستتر است. پروتون­ها و نوترون­ها اشیایی نسبتاً پیچیده با اندازه و ساختار کوارکی درونی می­باشند. از طرف دیگر نظریه میدان­های کوانتومی مربوط به ذرات بنیادی نقطه­ای، یعنی اشیاء بدون ساختار، مثل الکترون، می­باشد. کوارک­های بدون ساختار به جای نوکلئون­ها، سرشت­های بنیادینی هستند که با نظریه میدان­های کواتومی توصیف می­شوند. معرفی آنها ما را قادر به کاوش برهم­کنش­های دیگر با همان تکنیک­های نظری قدرتمندی می­سازد که در توصیف خواص و برهم­کنش­های الکترومغناطیسی الکترون­ها بسیار موفق بوده­اند (الکترودینامیک کوانتومی).

 

به علت اصل طرد پائولی برای ذرات با اسپین 2/1 برای حالت­های باریونی و مزونی، یک خاصیت یا عدد کوانتومی جدید برای کوارک­ها (نه برای لپتون­ها) به نام”رنگ” پیشنهاد شد. فرض می­شود که کوارک­ها به سه رنگ اصلی پدیدار می­شوند: قرمز، سبز و آبی. تمام رنگ­های طبیعی را می­توان از ترکیب سه رنگ اصلی ساخت. عدد کوانتمی رنگ را باید به طریقی معرفی کرد که تعداد حالات مجاز را زیاد نکند، در غیر این صورت نظریه با مشاهده در تناقض خواهد بود. این عمل بدین صورت انجام می­­شود که تاکید شود تمام ذرات قابل مشاهده باید بدون رنگ یا سفید باشند.

 

واسط برهم­کنش­های قوی، الکترومغناطیسی و ضعیف همگی بوزون­های برداری با اسپین 1 هستند. این بوزون­های برداری واسطه، در برهم­کنش­ها با بارهای ذرات جفت می­شوند. شناخته­شده­ترین نوع بار، بار الکترونیکی است. انتشار دهنده برهم­کنش الکترومغناطیسی، فوتون، به بار الکتریکی ذره جفت می­شود. انتشار دهنده­های برهم­کنش­های ضعیف، W و Z، به بار ضعیف جفت می­شوند و انتشار دهنده­های نیروهای قوی، گلوئون­ها، نیز به بار رنگی جفت می­شوند، که اولین بار توسط گرینبرگ[2] در سال 1964 بیان شد. بنابرین در حالیکه تنها یک نوع بار الکتریکی وجود دارد،  سه نوع بار رنگی وجود دارد و نتیجتاً برهم­کنش قوی با گروه تقارنی (3)SU شرح داده می­شود که به آن (3)SU رنگ گفته می­شود.

 

واقعیت دیگر برهم­کنش قوی آن است که کوارک­های آزاد در طبیعت وجود ندارند. مکا­نیسم نبود کوارک­های آزاد را محبوسیت[3] می­نامند که ناشی از این واقعیت است که گلوئون­ها خودشان بار حمل می­کنند. لذا چون گلوئون­ها رنگ حمل می­کنند می­توانند به یکدیگر مقید شوند. پدیده خود-جفت­شدگی در الکترومغناطیس وجود ندارد زیرا فوتون بار الکتریکی  ندارد.

 

نظریه کوانتمی که برهم­کنش قوی را شرح می­دهد، کرومودینامیک کوانتومی (QCD) نام دارند [3]. مدل­های نظریه­ای ساخته می­شوند تا طبیعت این برهم­کنش­های  غیر قابل مشاهده را شرح دهند. ساده­ترین برهم­کنش وقتی رخ می­دهد که تنها یک بوزون واسطه بین حالت­های اولیه و نهایی وجود داشته باشد. در هر نقطه که ذره واسطه با یک ذره جفت می­شود، یک ثابت جفت­شدگی به کل فرایند اضافه می­شود. همچنین فرایند­هایی وجود دارد که شامل بیشتر از یک برهم­کنش داخلی هستند. برهم­کنش­­های داخلی بیشتر باعث افزایش تعداد ثابت­های جفت­شدگی می­شوند. اگر ثابت جفت­شدگی کوچک باشد، فرایند­های داخلی پیچیده­تر (فرایند­های درجه بالاتر) تأثیر کمتری در کل فرایند خواهند داشت. به عنوان مثال، نظریه کوانتومی که برهم­کنش الکترومغناطیسی را شرح می­دهد، الکترودینامیک کوانتومی (QED)، یک ثابت جفت­شدگی به صورت  دارد که e بار الکترون،  ثابت گذردهی خلاء،  ثابت پلانک و c سرعت نور است. ثابت جفت­شدگی قوی وابسته به انرژی است،  که  مقیاس انرژی است . شکل (2-1) تغییرات  را به عنوان تابعی از انرژی نشان می­دهد که از تقریباً 25/0 در  تا تقریباً 11/0 در  کاهش می­یابد. وقتی  آنگاه ، که این رفتار آزادی مجانبی[4] نام دارد و لذا گفته می­شود که کرومودینامیک کوانتومی بطور مجانبی آزادی دارد. به ازای  کوچک، محاسبات اختلالی می­تواند انجام شود که به این فرمالیسم، کرومودینامیک کوانتومی اختلالی (PQCD) گفته می­شود.

 
مداحی های محرم