وبلاگ

توضیح وبلاگ من

مقطع کارشناسیمخابرات سیستم


امروزه در عصر ارتباطات و گسترش روزافزون استفاده از شبكه های تلفن ،موبایل و اینترنت در جهان ومحدودیت پهنای باند در شبكه های مخابراتی ، كدینگ و فشرده سازی صحبت امری اجتناب ناپذیر است . در چند دهه اخیر روشهای كدینگ مختلفی پدیدآمده اند ولی بهترین و پركاربردترین آنها كدك های آنالیزباسنتز هستند كه توسط Atal & Remedeدر سال 1982 معرفی شدند [2] . اخیرا مناسبترین الگوریتم برای كدینگ صحبت با كیفیت خوب در نرخ بیت های پائین و زیر 16 kbps ، روش پیشگویی خطی باتحریك كد (CELP) می باشد كه در سال 1985 توسط Schroeder & Atal معرفی شد [8] و تا كنون چندین استاندارد مهم كدینگ صحبت بر اساس CELP تعریف شده اند .
در سال 1988 CCITT برنامه ای برای استانداردسازی یك كدك 16 kbps با تاخیراندك و      كیفیت بالا در برابر خطاهای كانال آغاز نمود و برای آن كاربردهای زیادی همچون شبكه PSTN ،ISDN ،تلفن تصویری و غیره در نظر گرفت . این كدك در سال 1992 توسط Chen et al.    تحت عنوان LD-CELP معرفی شد[6] و بصورت استاندارد G.728 در آمد[9] و در سال 1994 مشخصات ممیز ثابت این كدك توسط ITU ارائه شد[10] . با توجه به كیفیت بالای این كدك كه در آن صحبت سنتزشده از صحبت اولیه تقریبا غیرقابل تشخیص است  و كاربردهای آن در شبكه های تلفن و اینترنت و ماهواره ای در این گزارش به پیاده سازی این كدك می پردازیم .
در فصل اول به معرفی وآنالیز سیگنال صحبت پرداخته می شود و در فصل دوم روش ها و استانداردهای كدینگ بیان می شوند . در فصل سوم كدك LD-CELP را بیشتر بررسی می كنیم و در فصل چهارم شبیه سازی ممیز ثابت الگوریتم به زبان C را بیان می نمائیم. ودر پایان در فصل 5 به نحوه پیاده سازی بلادرنگ كدكG.728 بر روی پردازنده TMS320C5402 می پردازیم.
فصل 1

 

بررسی و مدل سازی سیگنال صحبت

 

1-1 –معرفی سیگنال صحبت
صحبت در اثر دمیدن هوا از ریه ها به سمت حنجره و فضای دهان تولید می‏شود. در طول این مسیر در انتهای حنجره، تارهای صوتی[1] قرار دارند. فضای دهان را از بعد از تارهای صوتی ، لوله صوتی[2]  می‏نا مند كه در یك مرد متوسط حدود cm 17 طول دارد . در تولید برخی اصوات تارهای صوتی كاملاً باز هستند و مانعی بر سر راه عبور هوا ایجاد نمی‏كنند كه این اصوات را اصطلاحاً اصوات بی واك [3]  می‏نامند. در دسته دیگر اصوات ، تارهای صوتی مانع خروج طبیعی هوا از حنجره می‏گردند كه این باعث به ارتعاش درآمدن تارها شده و هوا به طور غیر یكنواخت و تقریباً پالس شكل وارد فضای دهان می‏شود. این دسته از اصوات را اصطلاحاً باواك[4]  می‏گویند.
فركانس ارتعاش تارهای صوتی در اصوات باواك را فركانس Pitch و دوره تناوب ارتعاش تارهای صوتی را پریود Pitch می‏نامند. هنگام انتشار امواج هوا در لوله صوتی، طیف فركانس این امواج توسط لوله صوتی شكل می‏گیرد و بسته به شكل لوله ، پدیده تشدید در فركانس های خاصی رخ می‏دهد كه به این فركانس های تشدید فرمنت[5]  می‏گویند.
از آنجا كه شكل لوله صوتی برای تولید اصوات مختلف، متفاوت است پس فرمنت ها برای اصوات گوناگون با هم فرق می‏كنند. با توجه به اینكه صحبت یك فرآیند متغییر با زمان است پس پارامترهای تعریف شده فوق اعم از فرمنت ها و پریود Pitch در طول زمان تغییر می‏كنند به علاوه مد صحبت به طور نامنظمی از باواك به بی واك و بالعكس تغییر می‏كند. لوله صوتی ، همبستگی های زمان-كوتاه  ، در حدود 1 ms ، درون سیگنال صحبت را در بر می‏گیرد. و بخش مهمی از كار كدكننده های صوتی مدل كردن لوله صوتی به صورت یك فیلتر زمان-كوتاه می‏باشد. همان طور كه شكل لوله صوتی نسبتاً آهسته تغییر می‏كند، تابع انتقال این فیلتر مدل كننده هم نیاز به تجدید[6] ، معمولاً در هر 20ms یکبارخواهد داشت.
در شكل (1-1 الف) یك قطعه صحبت باواك كه با فركانس 8KHz نمونه برداری شده است  دیده می‏شود. اصوات باواك دارای تناوب زمان بلند به خاطر پریود Pitch هستند كه نوعاً   بین 2ms تا 20ms می‏باشد. در اینجا پریود Pitch در حدود 8ms یا 64 نمونه است. چگالی طیف توان این قطعه از صحبت در شكل (1-1 ب) دیده می‏شود[3].
اصوات بی واك نتیجه تحریك نویز مانند لوله صوتی هستند و تناوب زمان- بلند اندكی را در بر دارند ، همانگونه كه در شكل های (1-1 ج) و (1-1 د) دیده می‏شود ولی همبستگی زمان كوتاه به خاطر لوله صوتی در آنها هنوز وجود دارد.
[1]  Vocal Cords
[2] Vocal Tracts
[3] Unvoiced
[4] Voiced
[5] Formant

پروژه دانشگاهی

 

[6]  Update
-2- مدل سازی  پیشگویی خطی
روش كدینگ پیشگویی خطی (LPC[1])  مبتنی بر مدل تولید صحبت در كد كننده های صوتی می‏باشد كه در اینجا در شكل (1-2) نشان داده شده است. برای استفاده از مدل لازم است كه معلوم شود سیگنال با واك است یا بی‏واك و اگر با واك است پریود Pitch مجاسبه گردد. تفاوت اصلی بین LPC و سایر كدكننده های صوتی  در مدل كردن لوله صوتی است. در تحلیل LPC ، لوله صوتی به صورت یك فیلتر دیجیتال تمام قطب در نظر گرفته می‏شود.[4,1].
شكل (1-2): مدل تولید صحبت در LPC
با شركت دادن بهره G در این فیلتر داریم:
كه در آن p مرتبه فیلتر است. اگر S(n) خروجی فیلتر مدل صحبت  و e(n) تحریك ورودی باشد، معادله فوق را در حوزه زمان به صورت زیر می‏توان نوشت:
به عبارت دیگر هر نمونه صحبت به صورت تركیب خطی از نمونه های قبلی قابل بیان است و این دلیل نام گذاری كدینگ پیشگویی خطی (LPC) می‏باشد.
1-2-1- پنجره كردن سیگنال صحبت
روش LPC هنگامی دقیق است كه به سیگنالهای ایستان[2] اعمال شود، یعنی به سیگنالهایی كه رفتار آنها در زمان تغییر نمی‏كند. هر چند كه این موضوع در مورد صحبت صادق نیست، اما برای اینكه بتوانیم روش LPC را بكار ببریم، سیگنال صحبت را به قسمت های كوچكی بنام   “فریم” تقسیم می‏كنیم كه این فریم ها شبه ایستان هستند. شكل (1-3) مثالی از قسمت بندی سیگنال صحبت را نشان می‏دهد. این قسمت بندی با ضرب كردن سیگنال صحبت  S(n) ، در سیگنال  پنجره W(n) انجام می‏شود.
شكل (1-3) : قسمت بندی سیگنال صحبت
معروف ترین انتخاب برای پنجره ، پنجره همینگ (Hamming) به صورت زیر است:
در اینجا N ، طول پنجره دلخواه به نمونه و عموماً در محدوده  160-320 انتخاب می‏گردد          كه 240 یك مقدار نوعی می‏باشد . در شكل (1-4) چند پنجره معروف نشان داده شده است.
معمولاً پنجره های متوالی برروی هم همپوشانی دارند و فاصله بین آنها را پریود فریم می‏گویند. مقادیر نوعی برای پریود فریم 10-30ms می‏باشد. این انتخاب به نرخ بیت و كیفیت صحبت دلخواه ما بستگی خواهد داشت. هر چه پریود فریم كوچكتر باشد، كیفیت بهتری خواهیم داشت.

 

شكل (1-4): نمایش چند پنجره معروف

 

1-2-2- پیش تاكید سیگنال صحبت
شكل (1-5) یك توزیع طیفی نمونه سیگنال صحبت را برای اصوات باواك نشان می‏دهد. با توجه به افت طیف در فركانس های بالا وضعیف بودن فركانس های بالا در طیف صحبت ، تحلیل  LPC در فركانس های بالا عملكرد ضعیفی خواهد داشت. برای تقویت مؤلفه های فركانس بالا صحبت ، آن را از یك فیلتر بالا گذر با تابع انتقال  كه فیلتر پیش تاكید نامیده می‏شود، عبور می‏دهیم. مقدار نوعی ضریب a معمولاً  در نظر گرفته می‏شود.
اگر S(n) سیگنال ورودی باشد، سیگنال پیش تأكید شده  خواهد شد:
شكل (1-5) :  پوشش طیفی نمونه اصوات باواك
1-2-3- تخمین پارامترهای LPC
در اینجا لازم است كه پارامترهای مدل LPC یعنی ضرایب ai فیلتر و بهره G تعیین گردند. اگر
تخمین S(n) از روی نمونه های قبلی باشد، ضرایب ai را چنان تعیین می‏كنیم كه خطای
روی همه نمونه های موجود مینیمم گردد. این مینیمم سازی ما را به معادلات خطی زیر می‏رساند:
و یا در فرم ماتریسی
R.= –r
در معادلات فوق  تعریف زیر را داریم:
كهr(i) ،  iامین اتوكورلیشن سیگنال می‏باشد و فرض شده كه S(n)  به طول N پنجره شده است. این فرمولاسیون به روش اتوكورلیشن معروف است و ماتریس R در آن یك ماتریس Toeplitz می‏باشد.  چنین ماتریسی غیرمنفرد و همیشه معكوس پذیر است و در نتیجه  همواره می‏‏توانیم جوابی به صورت = -R-1r داشته باشیم.
روش دیگری نیز بنام روش كواریانس وجود دارد. در این روش سیگنال صحبت S(n) پنجره نمی‏شود و به جای اتوكورلیش های r(i) ، كواریانس های r(i,j) برای عنصر (i,j) ماتریس R محاسبه می‏گردد:
در اینجا تضمین نمی‏شود كه ماتریس R معكوس پذیر باشد و ممكن است كه سیستم معادلات فوق جواب نداشته باشد. در این حالت فیلتر LPC ناپایدار می‏شود. از این رو در اینجا بیش از این به روش كواریانس نمی‏پردازیم.
راه سوم روش Burg است كه امتیاز عدم استفاده از پنجره را در روش كواریانس با امتیاز روش اتوكورلیشن یعنی تضمین پایداری فیلتر ، تركیب می‏كند. این روش از  ساختار مشبك[3]    فیلتر تمام قطب  استفاده می‏كند[1] .
جواب دستگاه معادلات فوق را می‏توان با یكی از روش های كلاسیك آنالیز عددی مثل حذف گوسی بدست آورد. اما چون R یك ماتریس Toeplitz است می‏توان از روشی مؤثر بنام روش تكرار Durbin سود جست که بصورت زیر ضرائب فیلتر را تولید می کند :
که در آن  ، ضریب   j ام فیلتردر تكرار  i ام و E(i) خطای پیشگویی مرتبه i است  و بدین ترتیب ضرایب فیلتر بصورت زیر  بدست خواهند آمد:
روش تكرار Durbin پارامترهای  را كه ضرایب انعكاس نامیده می‏شوند و E(p) را بدست می‏دهد كه مربع بهره پیشگویی G و مورد نیاز فیلتر سنتز می‏باشد:
و چون داریم :
می‏توانیم به جای E(p) ،r(0) را كد كرده و ارسال داریم و از آنجا به بهره G برسیم و این ترجیح داده می‏شود زیرا حساسیت r(0) به نویز كوانتیزاسیون كمتر از G است.
ضرایب انعكاس Ki یا PARCOR (برای  PARtial CORrelation) نقش مهمی در تحلیل LPC دارند و دارای خواص زیر هستند:

 

 

  • ضرایب انعكاس Ki معادل با ضرایب فیلتر ai هستند . به عبارت دیگر می‏توان K را به a و برعكس تبدیل کرد :

 

 
ـ برای یك فیلتر پایدار یعنی یك فیلترLPC   كه همه قطب های آن داخل دایره واحد باشد داریم:
كه این شرط بسیار مهمی است چرا كه با اطمینان از اینكه Ki  بین –1 و +1 است حتی            بعد از كوانیتزاسیون ، پایداری فیلتر تضمین خواهد شد. به علاوه محدوده (-1 , +1) كار كوانیتزاسیون را ساده‏تر می‏كند. ولی ai ها دارای چنین ویژگی نیستند كه پایداری فیلتر را تضمین نمایند و كوانیتزاسیون ai ها می‏تواند موجب ناپایداری ‏شود.
[1]  Linear Predictive Coding
[2]  Stationary
[3]  Lattice

کارشناسیبوم شناسی آبزیان شیلاتی

 

 

آب­های جاری یا رودخانه­ها از مهم­ترین منابع آب هستند که نقش مهمی در تأمین آب مورد نیاز فعالیت­های مختلف کشاورزی، صنعت، شرب و تولید برق دارند. آگاهی از کمیت وکیفیت منابع آب یکی از نیاز­های مهم در برنامه­ریزی و توسعه منابع آب، حفاظت و کنترل آن است. بدیهی است برای آگاهی ازكیفیت منابع آب وتولید اطلاعات جامع و کامل باید پایش­های دائمی انجام شود. چرا كه داشتن اطلاعات جامع، صحیح وقابل اطمینان با دوره­های زمانی مناسب می­تواند عامل مهمی در تصمیم گیری­ها و سیاست­گذاری­ها باشد [13].

 

رودها نه تنها آب بلکه مقدار زیادی رسوب، کانی­های محلول و پوده­های غنی از مواد غذایی حاصل از پسماند گیاهان و جانوران زنده و مرده

دانلود مقالات

 را به پایین دست حمل می­کنند. تغییرات یک رودخانه نه تنها وابسته به سرزمین­های گوناگونی است که از آنها می­گذرد، بلکه به تغییرات فصلی و تفاوت میان سال­های خشک و تر نیز مربوط می­شود. تغییرات سالانه و فصلی حجم آب، رسوبات و مواد مغذی شسته شده در یک حوزه آبخیز ممکن است بسیار زیاد باشد، به ویژه در مناطق خشک که بخش بزرگی از بارش سالانه در چند طوفان می­بارد [24].

 

صفحه:119

 

قیمت : چهارده هزار تومان

بررسی تصاویرمیکروسکوپ گمانه روبشی با استفاده از تبدیل موجک

:

 

پیشرفت­های اخیر در فناوری نانو مربوط به توانایی­های جدید در زمینه اندازه­گیری و كنترل ساختارهای منفرد در مقیاس نانو می­باشد.

 

در علوم مختلف مهندسی، موضوع اندازه­گیری و تعیین مشخصات از اهمیت كلیدی برخوردار است به طوری كه ویژگی­های فیزیكی و شیمیایی مواد، به مواد اولیه­ی مورد استفاده و همچنین ریزساختار یا ساختار میكروسكوپی به دست آمده از فرایند ساخت بستگی دارد.

 

به عنوان مثال برای شناسایی مواد ، بدیهی است كه نوع و مقدار ناخالصی­ها، شكل و توزیع اندازه ذرات، ساختار بلورین و مانند آن در ماهیت و مرغوبیت محصول اثر دارند.

 

در ضمن برای مطالعه ریزساختارها، نیاز بیشتری به ابزارهای شناسایی و آنالیز وجود دارد. در ریزساختار یا ساختار میكروسكوپی مواد، باید نوع فازها، شكل، اندازه، مقدار و توزیع آن­ها را بررسی كرد. در ادامه با توجه به اهمیت دستگاه­ها و روش­های اندازه­گیری و تعیین مشخصات به طبقه­بندی این روش­ها پرداخته می­شود.

 

-1 روش­های میكروسكوپی

 

با استفاده از روش­های میكروسكوپی تصاویری با بزرگنمایی بسیار بالا از ماده بدست می­آید. قدرت تفكیك تصاویر میكروسكوپی با توجه به كمترین قدرت تمركز اشعه محدود می­شود. به عنوان مثال با استفاده از میكروسكوپ­های نوری با قدرت تفكیكی در حدود 1 میكرومتر و با استفاده از میكروسكوپ­های الكترونی، و یونی با قدرت تفكیك بالا در حدود یك آنگسترم قابل دسترسی است. این روش­ها شامل TEM،AFM ،SEM ،STM می­باشد[6،5].

 

1-2 روش­های براساس پراش

 

پراش یكی از خصوصیات تابش الكترومغناطیسی می­باشد كه باعث می­شود تابش الكترومغناطیس در حین عبور از یك روزنه و یا لبه منحرف شود. با كاهش ابعاد روزنه به سمت طول موج اشعه الكترومغناطیسی اثرات پراش اشعه بیشتر خواهد شد. با استفاده از پراش اشعه ایكس، الكترونها و یا نوترونها و اثر برخورد آن­ها با ماده می­توان ابعاد كریستالی مواد را اندازه­گیری كرد. الكترونها  و نوترونها  نیز خواص موجی دارند كه طول موج آن به انرژی آن­ها بستگی دارد. علاوه بر این هر كدام از این روش­ها خصوصیات متفاوتی دارند. مثلا عمق نفوذ این سه روش در ماده به ترتیب زیر می­باشد. نوترون از اشعه ایكس بیشتر و اشعه ایكس از الكترون بیشتر می­باشد.

 

1-3 روش­های طیف سنجی

 

استفاده از جذب، نشر و یا پراش امواج الكترومغناطیس توسط اتم­ها و یا مولكول­ها را طیف سنجی گویند. برخورد یك تابش با ماده می­تواند منجر به تغییر جهت تابش و یا تغییر در سطوح انرژی اتم­ها و یا مولكول­ها شود، انتقال از تراز بالای انرژی به تراز پایینتر، نشر و انتقال از تراز پایین انرژی به تراز بالاتر، جذب نامیده می­شود. تغییر جهت تابش در اثر برخورد با ماده نیز منجر به پراش تابش می­شود.

 

طیف سنجی جرمی

 

پایان نامه های دانشگاهی

 

 

روش­های طیف سنجی جرمی از تفاوت نسبت جرم به بار اتم­ها و یا مولكول­ها استفاده می­کنند. عملكرد عمومی یك طیف سنجی جرمی بصورت زیر است:

 

1 – تولید یون­های گازی

 

2 – جداسازی یون­ها براساس نسبت جرم به بار

 

3 – اندازه­گیری مقدار یون­ها با نسبت جرم به بار ثابت

 

1-4 روش­های جداسازی

 

در نمونه­هایی كه حاوی چند جز نا شناخته باشد، ابتدا باید از هم جدا شده و سپس اجزا توسط روش­های آنالیز مشخص می­شود. جداسازی براساس تفاوت در خصوصیات فیزیكی و شیمیایی صورت می­گیرد. به عنوان مثال حالت ماده، چگالی و اندازه از خصوصیات فیزیكی مورد استفاده و حلالیت نقطه جوش و فشار بخار از خواص شیمیایی مورد استفاده در جداسازی می­باشد.

 

سوزن­ها

 

بسته به مد مورد استفاده­ی AFM و خاصیت مورد اندازه­گیری از سوزن­های مختلفی استفاده می­شود. زمانی كه فرایند اندازه­گیری مستلزم وارد كردن نیروهایی فوق العاده زیاد از جانب سوزن به سطح باشد از سوزن­های الماسی استفاده می­شود. همچنین سوزن­های با روكش­های الماس گونه برای این منظور مورد استفاده قرار می­گیرند. به عنوان مثال در ایجاد نانو خراش­ها با نیروهایی به بزرگی N سرو كار داریم  (این در حالیست كه در مد تماسی نیروی وارد بر سطح N می­باشد) و باید از این نوع سوزن­ها استفاده كنیم. پارامترهای هندسی سوزن كه نوع كارایی سوزن و میزان دقت نتایج بدست آمده را تعیین می­کنند عبارتند از شكل، بلندی، نازكی (زاویه راس هرم فرضی منطبق بر نواحی نوك)، تیز ی (شعاع دایره فرضی منطبق بر نوك).

 

شكل 1-2  انواع شکل­های سوزن شامل نوك تخت، نوك كروی، نوك T شكل  و نوك تیز

 

سوزن­های T شكل برای نقشه­برداری و آشكارسازی فرورفتگی­های موجود در بخش­های دیواره مانند سطح نمونه به كار می­روند. این در حالی است كه سوزن­های نوك تیز این قابلیت را ندارند.

 

1-6 نحوة بر هم كنش سوزن با سطح

 

شكل 1-3 به طور نمادین بزرگی و تغییرات نیروی بین سوزن و سطح را در فواصل مختلف سوزن از سطح نشان می­دهد. جهت فلش­ها نشان دهنده نزدیك شدن (رفت) یا دور شدن (برگشت) سوزن نسبت به سطح می­باشد.

 

شكل 1-3سمت چپ: نمایش نمادین بزرگی تغییرات نیروی بین سوزن و سطح در فواصل مختلف سوزن از سطح  سمت راست: انحراف تیرك حین رفت و برگشت در نواحی مختلف فاصله از سطح (نیروی جاذبه یا دافعه).

 

نکته:

 

باید حین فرآیند جاروب سطحی فاصلة سوزن از سطح در محدودة مناسبی باقی بماند. چرا كه از یك طرف فاصلة زیاد (در این نواحی نیروی جاذبه است) موجب كم شدن میزان انحراف لرزانك و كاهش نسبت سیگنال به نویز در تعیین مولفة Z مكان سطح می­شود. از طرف دیگر فاصلة بسیار نزدیك موجب وارد شدن نیروی زیاد به سطح می­شود كه علاوه ­بر آسیب زدن به ساختار سطح و سوزن موجب كاهش درجة تفكیك خواهد شد.

 

1-7مدهای تماسی

 

مطابق تعریف به ناحیه­ای ” ناحیة تماس ” می­گویند كه نیروی بین سوزن و سطح دافعه باشد. در مقایسه با مدهای دیگر نیروی وارد شده به سطح در مدهای تماسی بزرگتر است. از طرفی به دلیل تماس پیوستة سوزن با سطح حین فرآیند روبش نیروهای اصطكاك قابل توجهی (علاوه­ بر نیروی عمودی) به سطح و سوزن وارد می­شود كه موجب آسیب دیدگی سطوح حساس و كند شدن سوزن می­گردد.

 

شکل 1-4 مقایسه نمادین بین حالت تماسی و حالت غیرتماسی

 

بر این اساس مطالعة سطوح حساس و نرم با مدهای تماسی قدرت تفكیك اندازه­گیری را كاهش می­دهد و بعضاً باعث بروز خطای سیستماتیك در نتایج می­شود. در عین حال بیشترین قدرت تفكیك و دقت اندازه­گیری با AFM مربوط به بررسی سطوح سخت با سوزن­های نازك و فوق تیز و سخت در مد تماسی می­باشد.

برخی از كاربردهای مجموعه ناهموار (فازی) روی گروه‌ها و حلقه‌ها

در این فصل برخی مفاهیم و نتایج در مورد مجموعه‌های ناهموار و مجموعه‌های ناهموار (فازی) كه در سایر فصول مورد استفاده قرار می‌گیرد را ارائه می‌كنیم.

 

برای كسب اطلاعات جامع‌تر در مورد این مفاهیم به [2] و [3] و [6] و [1] و [15] مراجعه شود.

 

1-2- مجموعه‌های ناهموار

 

1-2-1- یادآوری

 

– به گردایه‌ای از اشیاء دوبدو متمایز مجموعه گوئیم.

 

– اگر A,B دو مجموعه باشند به  ضرب دكارتی A در B گوییم.

 

– هر زیر مجموعه‌ی   یك رابطه از  A به B نامیده می‌شود. اگر A=B باشد، به هر زیر مجموعه   یك رابطه روی A گفته می‌شود. اگر R رابطه‌ای روی  A باشد و  می‌نویسیم aRb.

 

– اگر R رابطه‌ای روی A باشد، وارون R به ‌صورت  و متمم R به ‌صورت  نمایش داده می‌شود.

 

– رابطه‌ی R روی مجموعه‌ی A بازتابی است یعنی:   

 

– رابطه‌ی R روی مجموعه‌ی A تقارنی است یعنی: 

 

– رابطه‌ی R روی مجموعه‌ی A ترایایی است یعنی:

 

– رابطه‌ی R روی مجموعه‌ی A هم‌ارزی است یعنی، بازتابی، تقارنی و ترایایی است.

 

– اگر R رابطه‌ی هم‌ارزی روی مجموعه A باشد، به   كلاس هم‌ارزی a یا كلاس هم‌ارزی R تولید شده توسط a گوییم.

 

– فرض كنید U یك مجموعه‌ی مرجع ناتهی باشد. مجموعه‌ی توانی U را با P(U) نمایش می‌دهیم.

 

– برای هر ، متمم مجموعه‌ی X را با XC نشان می‌دهیم، كه به‌صورت UX تعریف می‌شود.

 

1-2-2- تعریف [1]

 

زوج  كه در آن  و  یك رابطه‌ی هم‌ارزی روی U است، یك فضای تقریب نامیده می‌شود.

 

1-2-3- تعریف [1]

 

فرض کنید  یک فضای تقریب دلخواه باشد، برای تعریف تقریب ناهموار، نگاشت  را تعریف می‌كنیم، با ضابطه‌‌ی:

 

 می باشد كه به‌ طوریكه  و  را تقریب ناهموار پایینی از X در  می‌نامیم و  را تقریب ناهموار بالایی از X در   می‌نامیم.

 

پروژه دانشگاهی

 

 

1-2-4- تعریف [1]

 

برای هر فضای تقریب ،  مجموعه‌ی ناهموار نامیده می‌شود اگر و تنها اگر برای بعضی از ، .

 

1-2-5- مثال

 

فرض كنید  یك فضای تقریب باشد، به‌طوریكه:

 

 و رابطه‌ی هم‌ارزی  با كلاس‌های هم‌ارزی زیر داده

 

شده باشد:

 

اگر  یک مجموعه باشد آنگاه  و و بنابراین  یك مجموعه‌ی ناهموار است.

 

1-2-6- مثال

 

فرض كنید یك فضای تقریب باشد به طوری كه  و رابطه‌ی هم‌ارزی  به صورت زیر باشد.

 

اگر I={0.1.2.3.4.6.10.11} باشد آنگاه و .

 

1-2-7- تعریف [1]

 

زیر مجموعه X از U تعریف‌پذیر نامیده می‌شود اگر  .

 

1-2-8- مثال

 

اگر  همان فضای تقریب مثال 1-2-6 باشد و  باشد آنگاه  و بنابراین  تعریف‌پذیر است.

 

1-2-9- توجه

 

اگر  با كلاس هم‌ارزی P و ، آنگاه

 

 1-  بدین معنی است كه x قطعاً در كلاس P قرار دارد.

 

2-  بدین معنی است كه x احتمالاً در كلاس P قرار دارد.

 

(3)  بدین معنی است كه x قطعاً در كلاس P قرار ندارد.

 

1-2-10- تعریف

 

زمانی كه ، گوییم A(C) یك زیر مجموعه‌ی ناهموار از A(B) است.

 

فرض كنید A© و A(B) دو مجموعه‌ی ناهموار باشند ، اگر و تنها اگر  و .

 

1-2-11- تعریف

 

متمم مجموعه‌ی ناهموار A© را با  نشان می‌دهیم و به صورت زیر تعریف می‌شود:

 

همچنین  را به صورت زیر تعریف می‌كنیم:

 

1-2-12- مثال

 

اگر  كلاس‌های هم‌ارزی به شرح زیر می‌باشد.

بررسی اثر بوریک اسید بر مورفولوژی و توان زیستی سلول های بنیادی مزانشیمی

: بور ریز مغذی ضروری برای گیاهان است و مطالعات نشان داده که این عنصر می تواند به عنوان یک ریزمغذی برای حیوانات و انسان نیز محسوب شود. در این پژوهش به منظور درک بهتر از نقش  بور، اثر دوزهای مختلف اسید بوریک بر توانایی حیات، تکثیر، تمایز و فاکتورهای بیوشیمیائی سلولهای بنیادی مزانشیم مغز استخوان رت (MSCs) مورد بررسی قرار گرفت. مواد و روش­ها: MSCs تا سه پاساژ کشت و برای بررسی توان تکثیر و تمایز در محیط­های کشت فاقد ترکیبات استئوژنیک و واجد ترکیبات استئوژنیک آلوده به اسید بوریک قرار داده شد. در بخش اول که شامل بررسی توانائی تکثیر میشود، توانایی حیات با کمک تست MTT و تریپان بلو در زمانهای 12، 24و 36 ساعت  بررسی و دوزهای 6 نانو، میکرو و میلی­گرم بر میلی­لیتر اسید بوریک و زمان 36 ساعت جهت انجام مطالعه انتخاب گردید. در ادامه، توانائی تکثیر با استفاده از توانایی تشکیل کلونی (CFA) و دو برابرشدگی جمعیتی (PDN)، مورفولوژی سلول ها توسط رنگ آمیزی فلوروسنس، سطح الکترولیت­های سدیم، پتاسیم با استفاده از فلیم فتومتر و میزان کلسیم، میزان فعالیت آنزیم­های LDH، ALP ،AST  و ALT توسط کیتهای تجاری ارزیابی شد. در بخش دوم که شامل بررسی توانائی تمایز میشود، تاثیر دوز 6 نانو و میکروگرم بر میلی­لیتر به عنوان دوزهای منتخب در زمانهای 5، 10، 15 و 21 روز بر توانایی زیستی، مورفولوژی، سطح الکترولیتها و فعالیت آنزیم هایLDH ،AST  و ALT در سلول ها تمایز یافته بررسی شد. میزان تمایز با استفاده از روش کمی آلیزارین رد، غلظت کلسیم و فعالیت آنزیم ALP مورد ارزیابی قرار گرفته و داده ها توسط روش آماری ANOVA، آزمون tukey آنالیز و p<0/05 به عنوان سطح معنی دار در نظر گرفته شد. نتایج:  نتایج بدست آمده نشان داد که در سلول های مزانشیم میزان توانایی زیستی در دوز و زمان کم تغییر نمی کند، اما افزایش در هر دو فاکتور زمان و دوز، کاهش فعالیت آنزیم­های متابولیکی و متعاقبا حیات را بدنبال داشت. در سلول­های استئوژنیک فقط در دوز بالا و با گذشت زمان منجر به کاهش توانایی حیات سلولی شد و دوز 6 نانوگرم هیچ اثری بر روی توانایی حیات نشان نداد ضمنا فاکتورهای تمایزی، الکترولیتها و آنزیمهای متابولیکی با افزایش زمان فقط در دوز 6 نانوگرم افزایش یافت. نتیجه گیری: تاثیر اسید بوریک به نوع سلول و شرایط تیمار وابسته است به گونه ای که در این مطالعه نشان داده شد که حساسیت سلول­های مزانشیم نسبت به سلول­های استئوبلاست بیشتر است. علاوه بر این دوز پایین اسیدبوریک دارای تاثیر مثبتی بر روند تمایز استخوان بود، لذا دوزهای پایین اسید بوریک می تواند نقش مفیدی بر سلامت سلول های مزانشیم و تمایز آنها به استئوبلاست داشته باشد.

 

کلید واژه­ها: سلول ­های بنیادی مزانشیم مغز استخوان، اسید بوریک، قابلیت حیات، آنزیم­های متابولیکی، تمایز

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

پایان نامه های دانشگاهی

 

  فصل اول: کلیات و هدف
1 1-1  سلول­های بنیادی ………………………………………………………………………
1 1-1- 1 تعریف سلول­های بنیادی…………………………………………..
2 1-1-2 ویژگی خودنوزایی سلول بنیادی…………………….
3 1-1-3 دسته­بندی سلول­های بنیادی بر اساس توان تمایزی آنها ……………………………………………………….
4 1-1-4 دسته­بندی سلول­های بنیادی بر اساس منشا ……………………………………………………..
4 1-1-4-1 سلول­های بنیادی جنینی…………………………………………………
6 1-1-4-2 سلول بنیادی خون بند ناف………………………………………..
7 1-1-4-3 سلولهای بنیادی بزرگسالان………………………..
10 1-1-5 سلول­های مغز استخوان ……………………………….
10 1-1-5-1 سلول­های بنیادی خونساز…………………………..
11 1-1-5-2 سلول مزانشیم مغز استخوان……………………………..
12 1-2  تاریخچه سلول بنیادی مزانشیم ………………………………..
13 1-2-1 مورفولوژی سلول بنیادی مزانشیم …………………………..
14 1-2-2 کنام سلول بنیادی مزانشیم مغز استخوان ……………………………………..
15 1-2-3 ویژگی­های اساسی سلول بنیادی مزانشیم …………………….
16 1-3  کاربردهای سلول بنیادی مزانشیم در درمان ………………..
17 1-3-1 ترمیم استخوان ……………………………………………….
17 1-4 بافت استخوان ……………………………………………..
20 1-5 استئوژنز(استخوان‌سازی) ……………………………..
21 1-5-1 استخوان­سازی اولیه یا جنینی ………………………..
23 1-5-2 استخوان­سازی ثانویه ………………………………………………..
23 1-5-3 دوباره­سازی استخوان …………………………………………..
24 1-6 هتروژن بودن کشت سلول بنیادی مزانشیمی ……………..
25 1-6-1 شرایط آزمایشگاهی تمایز مزانشیم به استخوان ………………………………………………
25 1-6-2 تنظیم مولکولی تمایز به استخوان سلول‌های بنیادی مزانشیمی ……………………………………………..
27 1-6-3 نقش سیگنال دهی Wnt در تمایز سلول های بنیادی مزانشیم به استخوان …………………………
29 1-7 عنصر بور ……………………………………..
30 1-7-1 مشتقات بور ………………………………………………………..
32 1-7-2 فراوانی عنصر بور ………………………………………
32 1-7-3 تاریخچه مصرف بور ………………………………..
33 1-7-4 منابع طبیعی بور…………………………………
34 1-7-5 اثرات بور برفلزات ضروری برای متابولیزم در جانوران ………………………………………….
34 1-7-5-1 تاثیر بور بر فیزیولوژی بدن …………………………………..
36 1-7-5-2 تاثیر بور بر روی سرین پروتئازها ……………………………………………………..
37 1-7-6 کاربرد بور در دارو ………………………………………………
37 1-7-7 سرطان ……………………………………………………….
39 1-8 اثرات بور روی استخوان …………………………………….
40 1-9 بور و خون ………………………………………………………..
41 1-10 بور در گیاهان …………………………………………………………
42 1-11 سمیت بور …………………………………………….
44 1-12 محدوده استفاده بور ………………………………………………
45 مروری بر مطالعات گذشته ………………………………………
47 هدف مطالعه ……………………………………………………………..
   
  فصل دوم: مواد و روش­ها
50 2-1  انتخاب رت ……………………………………………………………….
50 2-2 جدا سازی وتكثیر سلول‌های بنیادی مزانشیم مغز استخوان …………………………………..
52 2-2-1 اجرای پاساژ ………………………………
54 2-3 اثبات مزانشیم بودن سلول های استخراج شده ……………………………………….
54 2-3-1 تمایز به استخوان …………………………………………………………….
55 2-4 بررسی توان زیستی سلولها (دوز فایندینگ) ………………………………
55 2-4-1  رنگ آمیزی تریپان بلو ………………………………………………..
57 2-4-2  سنجش تترازولیوم (MTT) …………………………………………………….
57 2-4-2-1 مراحل انجام سنجش MTT)غیر استئوژنیک( …………………………………………………………………..
58 2-4-2-2  ترسیم منحنی استاندارد با استفاده از سنجش تترازولیوم …………………………………………………
59 2-4-2-3 مراحل انجام تست MTT استئوژنیک …………………….
60 2-5  انتخاب دوز مورد نظر ………………………………………..
60 2-6 بررسی توان تکثیری سلول­های بنیادی مزانشیم …………….
61 2-6-1 سنجش توانایی کلونی­زایی ………………………………
63 2-6-2 محاسبه تعداد دوبرابرشدگی جمعیتی(PDN) ………………..
62 2-7 بررسی تغییرات مورفولوژیکی با استفاده از رنگ آمیزی فلوروسنت ……………………………………………..
65 2-8 آزمون­های بیوشیمیایی در شرایط تمایز و غیرتمایزی ………………………………………….
65 2-8-1تیمار و استخراج عصاره سلولی ………………………………
65 2-8-2 بررسی فعالیت آنزیم­ها ………………………………………
66 2-8-2-1 تهیه ی نمودار استاندارد برای آزمایش لاوری …………………………………….
66 2-8-2-2 ترانس آمینازها …………………………………
68 2-8-2-3 لاکتات دهیدروژناز…………………………………
70 2-8-2-4 آنزیم آلکالین فسفاتاز ………………………………………………
72 2-8-3 سنجش میزان رسوب ماتریكس معدنی به كمك رنگ آلیزارین رد در سلول های استئوژنیک
72 2-8-3-1  رسم منحنی استاندارد برای رنگ آمیزی آلیزارین رد ………………………..
73 2-8-3-2  بررسی رسوب ماتریکس استخوانی در نمونه های تیمار شده …………………………………
73 2-8-4  بررسی الکترولیت ها )کلسیم، سدیم و پتاسیم( …………………….
73 2-8-4-1 بررسی میزان کلسیم داخل سلولی با استفاده از کیت کلسیم به روش رنگ سنجی …………
74 2-8-4-1-1 مراحل  انجام تست کلسیم در سلول های تمایز یافته )استئوبلاست( …………………………..
75 2-8-4-1-2 مراحل انجام اندازه­گیری میزان کلسیم …..
76 2-8-4-2 اندازه­گیری غلظت سدیم و پتاسیم سلول استئوژنیک و غیر استئوژنیک …………………………..
81 2-9 تجزیه و تحلیل آماری داده ها …………..
   
  فصل سوم: نتایج
82 3-1 الف: نتایج مرحله اول …………………………………
82 3-1-1  رشد و تکثیر سلولهای بنیادی مزانشیم ……………………
82 3-1-2  اثر اسید بوریک بر توانایی زیستی سلولهای بنیادی مزانشیم مغز استخوان رت ……………………
85 3-1-3  بررسی مورفولوژی سلولهای تیمار شده ………………
87 3-1-4  نتایج توانایی کلونی زایی، تعداد دوبرابر شدگی جمعیت سلول ……………………………………………..
89 3-1-5  اثر اسید بوریک بر فاکتورهای بیوشیمیایی ……
91 3-1-6  میزان الکترولیتها…………………………………………..
92 3-2  نتایج اثر دوزهای انتخابی اسید بوریک بر شاخص های تمایز به استئوبلاست …………………………..
92 3-2-1 توانایی زیستی سلولها در روند تمایز ………………………..
93 3-2-2 بررسی تغییرات مورفولوژیکی با استفاده از رنگ­آمیزی فلورسنت در نمونه­های  استئوژنیک
96 3-2-3 بررسی اثر اسید بوریک بر فاکتورهای بیوشیمیایی سلولهای تمایز یافته ………………………………..
97 3-2-3-1  میزان معدنی شدن ماتریکس با سنجش رنگ آلیزارین رد ………………………………………………..
100 3-2-3-2  میزان رسوب کلسیم ……………………………………..
101 3-2-3-3  بررسی فعالیت آنزیم آلکالین فسفاتاز ………….
101 3-2-3-2 بررسی فعالیت آنزیم آسپارتات و آلانین ترانس آمیناز ………………………………………………………..
103 3-2-3-5  بررسی فعالیت لاکتات دهیدروژناز ………………..
103 3-2-3-6  بررسی سطح الکترولیت های سلولهای استئوژنیک ……………………………………………
 

 

 

 

 

  فصل چهارم: بحث و نتیجه­گیری
105 4-3 اثر اسیدبوریک بر سلولهای مزانشیم ………………………..
105 4-1-1اثر اسید بوریک بر توانایی زیستی و توان تکثیر سلولها ……………………………………………………
108 4-1-2 بررسی تاثیر اسید بوریک بر تغییرات مورفولوژیکی …………………………………………………………………
109 4-1-3 اثر اسید بوریک بر فاکتورهای بیوشیمیایی ….
113 4-1-4  اثر اسید بوریک بر فعالیت آنزیمهای متابولیکی ………………………………………
116 4-2  اثر اسیدبوریک بر تمایز سلولی ………………………………
116 4-2-1 توانایی زیستی …………………………………….
119 4-2-2 بررسی سطح الکترولیت ها …………………………………………….
120 4-2-3  بررسی فاکتورهای استئوژنیک …………………….
124 4-2-4  بررسی اثر اسید بوریک بر آنزیم های متابولیکی …………..
127 4-2-5  تاثیر اسید بوریک بر مورفولوژی سلولهای تمایزی ……………………………………………..
128 4-3  نتیجه گیری ………………………………………………………
129 4-4 پیشنهادات …………………………………………………………….
   
  فصل پنجم:ضمیمه
131 5-1 روش تهیه محیط کشت ………………………………………………….
131 5-2  تهیه ی فسفات بافر سالین PBS …………………………….
132 5-3 تهیه ی فسفات بافر سالین مثبت PBS+………………………
132 5-4 روش تهیه محیط تمایزی استئوژنیک …………………………..
133 5-5  آماده سازی آلیزارین رد ……………………………………………
133 5-6  روش تهیه محلول تریپان­بلو 4/0 درصد …………………………….
133 5-7  تهیه کریستال ویولت ………………………………………
133 5-8 روش تهیه محلول   MTT………………………………….
133 5-9  روش تهیه بافر شست و شو(  ( Tris-Hcl-NaCl…………………..
133 5-10 مواد لازم و روش تهیه بافر  استخراج ( Tris-Hcl) …………
134 5-11 روش تهیه بافر ARS ……………….
134 5-12 روش تهیه محلول BSA ……………………………
134 5-13   روش تهیه محلول کمپلکس لاوری …………
135 5-14  روش تهیه بافر استخراج کلسیم ………………………….
135 5-15 روش تهیه رنگ های فلورسنس هوخست و آکریدین اورنژ ….

 

تعریف سلول­های بنیادی

 

   به طور نرمال سلول­های تخصص یافته بدن مثل سلول پوست یا سلول عصبی در تمام دوره زندگی به همان صورت باقی می­مانند، اما در بدن سلول­های دیگری به نام سلول­های بنیادی وجود دارند که توانایی تبدیل به سلول­های دیگری چون سلول قلب، عصبی، ماهیچه و ……. را دارا می­باشند (1).

 

سلول­های بنیادی[1] سلول­هایی غیر تخصصی[2] در بدن هستند که قابلیت تمایز به سلول­های تخصص­یافته را با کسب کلیه اعمال سلولی تخصصی دارند. این سلول­ها دارای دو ویژگی اساسی یعنی توانایی تقسیم و تولید سلول­هایی با خواص یکسان (خودنوزایی)[3]و ایجاد انواع سلول­های تمایزیافته می‌باشند (شکل 1-1)(1).

 

به دلیل این­که این سلول­ها منشا تولید بقیه انواع سلول­ها هستند واژه بنیادی در مورد آنها به کار می­رود به عبارت دیگر یک سلول بنیادی، سلولی است که به دلیل توانایی کسب کلیه اعمال تخصصی قابلیت تبدیل به سلول­های تخصص یافته را دارد. این سلول­ها جهت تمایز نیازمند دریافت سیگنال هستند. قاعدتاً یک سلول بنیادی تا قبل از دریافت یک سیگنال جهت تکامل به سلول تخصصی به صورت غیرتخصصی باقی می­ماند. سلول­های بنیادی در بدن انسان ویژگی تمایز به بسیاری از سلول­ها را دارند. همچنین به عنوان سیستم ترمیم به خدمت گرفته می­شوند زیرا که توانایی تقسیم بدون محدودیت برای جایگزینی دیگر سلول­ها را دارا می­باشند. وقتی یک سلول بنیادی تقسیم می­شود هر سلول جدید بدست آمده این پتانسیل را دارد که سلول بنیادی باقی بماند یا به سلول تخصصی جدید مثل سلول­های خونی و … تمایز یابد (1).

 

 

 

 

 

شکل1-1: توانائی خودنوزائی و  پتانسیل تمایز در سلولهای بنیادی (www.cellingbiosciences.com)

 

 1-1-2 ویژگی خودنوزایی سلول بنیادی

 

   تکثیر یا خودتجدیدی، توانایی سلول­ها در تولید نسخه­های یکسان از خود، توسط تقسیم میتوز در یک دوره زمانی مشخص است به صورتی که خصوصیات ژنتیکی و کاریوتایپی در سلول­های دختری عینا شبیه سلول­های مادری باقی می­ماند.

 

خودتجدیدی سلول­ها بنیادی تحت تاثیر سیگنال­های درونی سلول بنیادی که به صورت تقسیم متقارن و نامتقارن است، قرار دارد. علاوه بر این سیگنال­های درونی، خودتجدیدی سلول­های بنیادی تحت تاثیر عوامل محیطی چون آسیب یا صدمه نیز می­باشد و تحت تاثیر این شرایط یک سلول بنیادی ممکن است دو سلول دختری ایجاد کند که یا به صورت سلول­های بنیادی باقی می­مانند یا متمایز می­شوند (2).

 

1-1-3 دسته­بندی سلول­های بنیادی بر اساس توان تمایزی آن­ها:

 

   سلول های بنیادی بر اساس توان تمایزی به صورت زیر دسته بندی می شوند:

 

الف) همه توان[4]واژه Totipotent از دو قسمت Toti= همه، potent= توانایی تشکیل شده است. از جمله این سلول­ها می­توان بلاستومرهای یک جنین دو سلولی را نام برد که قادر است همه سلول­های بدن یک فرد کامل را بسازد. این سلول‌ها می‌توانند به انواع سلول‌های جنینی و برون جنینی تمایز پیدا کنند و اندام‌های قابل زیستی را ایجاد نمایند.

 

ب) پر توان[5]این نوع سلول­ها قادر به ساخت غالب یا همه سلول­های فرد هستند. به عنوان مثال سلول­های بنیادی جنینی تحت شرایط خاص می­توانند یک فرد را بسازند ولی قادر به ایجاد سلول­های جفت نیستند. سلول‌های بنیادی جنینی و سلول‌های پر توان القایی جز این دسته از سلول‌های بنیادی می‌باشند.

 

پ)چند توان[6]: سلولهای بنیادی هستند كه به تعداد محدودتری از انواع سلول‌ تمایز پیدا می­‌کنند (در بافت­های بزرگسال نظیر مغز، مغز استخوان، كبد و… وجود دارند).

 

ت) یک توان[7]: توانایی ایجاد یک نوع سلول را دارند ولی توانایی خود نوزایی خود را حفظ کرده­اند. مانند سلول­های بنیادی اسپرماتوگونی که توانایی تولید اسپرم را دارند (شکل 1-2) (3).

 

 

 

شکل 1-2: دسته­بندی سلول­های بنیادی براساس پتانسیل تمایزی آنها (www. njavan.com).

 

1-1-4 دسته­بندی سلول­های بنیادی بر اساس منشا

 

   سلول­های بنیادی بر اساس منشا به سه دسته اصلی تقسیم­بندی می­شوند

 

1-1-4-1 سلول­های بنیادی جنینی

 

  کشت موفقیت آمیز آزمایشگاهی سلول­های بنیادی جنینی انسانی (ESCs) [8] در سال 1998 توسط تامپسون و همکارانش انجام گرفت.

 

سلول­های بنیادی جنینی از توده سلولی داخلی (ICM)[9]جنین در مرحله بلاستوسیت به دست می­آیند. بلاستوسیت مرحله­ای از تکوین پیش از لانه­گزینی در پستانداران است که معمولا چهار تا پنج روز بعد از لقاح ایجاد می­شود. در این مرحله جنین 200-100 سلول دارد و به صورت کره­ای توخالی است. این کره متشکل از یک لایه سلولی برونی (تروفواکتودرم) است که به طور معمول پس از لانه­گزینی در رحم، بخشی از جفت را می­سازد. همچنین این کره مجتمعی از سلول­ها (حدود 30-20سلول) در داخل کره به نام توده سلولی داخلی است که قادرند لایه­های مختلف جنین کامل را تولید کنند (شکل 1-3) (4).

 

شکل 1-3: تصویر شماتیک از سلول­های بنیادی جنینی که توانایی ایجاد سلول­های هر سه لایه­ی زاینده­ی جنینی را دارا می­باشد و همچنین سلول­های بنیادی بالغ که توانایی خودنوزایی و تمایز را دارند (5) .

 

1-1-4-2 سلول بنیادی خون بند ناف[10]

 

   خون بند ناف غنی از سلول­های بنیادی و سلول­های خونساز است. این سلول‌ها بسیار پرتوان و نامیرا هستند و همچنین در اثر تکثیرهای پی در پی دچار پیری نمی‌شوند، به طوری­که با تزریق‌ و یا جایگزینی آنها در بافت‌‌هایی که آسیب جدی دیده‌اند می‌توانیم به بهبودی و تشکیل سلول‌های جدید بافت کمک نمائیم. خون بند ناف دارای 6/0 تا 1 درصد سلول‌های پیش‌ساز خونی و بنیادی خون‌ساز است. ژله وارتون بند ناف منبع غنی از موکوپلی­ساکاریدها بوده که سلول­های بنیادی بالغ نیز در آن یافت می­شود (6)خون بند ناف دارای مزایای زیادی چون محدود نبودن به اهداکننده، بلوغ کمتر سلول نسبت به سلول‌های فرد بالغ و کاهش احتمال پس­زدگی پس از پیوند می‌باشد (7). همچنین خون بند ناف را می‌توان ذخیره نمود و در موارد نیاز برای خود شخص یا فرد دیگری استفاده نمود. استفاده از این سلول‌ها در درمان بیماری‌ها چندان معمول نیست ولی این سلول‌ها در درمان دیابت نوع 1، بیماری‌های قلبی و عروقی، لوپوس اریتماتوس، بیماری‌های نورولوژیک مانند سکته مغزی، پارکینسون و آلزایمر، کم‌خونی‌ها و نقص ایمنی و بیماری‌های کبدی به کار می‌رود (شکل 1-4) (6).

 

 

 

شکل 1-4: نمایی از بند ناف (رگ‌های بند ناف (2 سرخرگ و یک سیاهرگ) و ژله وارتون[11] و غشا خارجی) (www.mdpi.com).

 

1-1-4-3 سلولهای بنیادی بزرگسالان (Adult stem cells):

 

انواع سلول بنیادی بالغ

 

بسیاری از بافت­های بالغ حاوی سلول­های بنیادی هستند و قدرت تمایز و توانایی خود نوزایی را دارند، به این سلول­ها سلول­های بنیادی بالغ گفته می‌شود. در زیر چند مثال از این نوع سلول‌ها آورده شده است:

 

الف) سلول بنیادی عصبی

 

   سلول بنیادی عصبی، سلول پرتوانی است که:

 

 1) قادر به تکثیر و تولید پیش‌سازهایی است که قابلیت تبدیل به سه نوع اصلی سلول‌های سیستم اعصاب مرکزی را دارند: یعنی آستروسیت‎‌ها، الیگودندروسیت‌ها و نورون‌ها.

 

2) این سلول‌ها توانایی خودنوزایی را داشته و همچنین به صورت متقارن و نامتقارن تقسیم می­گردند.

 

3) یک سلول بنیادی عصبی خصوصیت پرتوانی خود را تا زمانی طولانی حفظ می­کند (8).

 
مداحی های محرم