امروزه در عصر ارتباطات و گسترش روزافزون استفاده از شبكه های تلفن ،موبایل و اینترنت در جهان ومحدودیت پهنای باند در شبكه های مخابراتی ، كدینگ و فشرده سازی صحبت امری اجتناب ناپذیر است . در چند دهه اخیر روشهای كدینگ مختلفی پدیدآمده اند ولی بهترین و پركاربردترین آنها كدك های آنالیزباسنتز هستند كه توسط Atal & Remedeدر سال 1982 معرفی شدند [2] . اخیرا مناسبترین الگوریتم برای كدینگ صحبت با كیفیت خوب در نرخ بیت های پائین و زیر 16 kbps ، روش پیشگویی خطی باتحریك كد (CELP) می باشد كه در سال 1985 توسط Schroeder & Atal معرفی شد [8] و تا كنون چندین استاندارد مهم كدینگ صحبت بر اساس CELP تعریف شده اند .
در سال 1988 CCITT برنامه ای برای استانداردسازی یك كدك 16 kbps با تاخیراندك و كیفیت بالا در برابر خطاهای كانال آغاز نمود و برای آن كاربردهای زیادی همچون شبكه PSTN ،ISDN ،تلفن تصویری و غیره در نظر گرفت . این كدك در سال 1992 توسط Chen et al. تحت عنوان LD-CELP معرفی شد[6] و بصورت استاندارد G.728 در آمد[9] و در سال 1994 مشخصات ممیز ثابت این كدك توسط ITU ارائه شد[10] . با توجه به كیفیت بالای این كدك كه در آن صحبت سنتزشده از صحبت اولیه تقریبا غیرقابل تشخیص است و كاربردهای آن در شبكه های تلفن و اینترنت و ماهواره ای در این گزارش به پیاده سازی این كدك می پردازیم .
در فصل اول به معرفی وآنالیز سیگنال صحبت پرداخته می شود و در فصل دوم روش ها و استانداردهای كدینگ بیان می شوند . در فصل سوم كدك LD-CELP را بیشتر بررسی می كنیم و در فصل چهارم شبیه سازی ممیز ثابت الگوریتم به زبان C را بیان می نمائیم. ودر پایان در فصل 5 به نحوه پیاده سازی بلادرنگ كدكG.728 بر روی پردازنده TMS320C5402 می پردازیم.
فصل 1
1-1 –معرفی سیگنال صحبت
صحبت در اثر دمیدن هوا از ریه ها به سمت حنجره و فضای دهان تولید میشود. در طول این مسیر در انتهای حنجره، تارهای صوتی[1] قرار دارند. فضای دهان را از بعد از تارهای صوتی ، لوله صوتی[2] مینا مند كه در یك مرد متوسط حدود cm 17 طول دارد . در تولید برخی اصوات تارهای صوتی كاملاً باز هستند و مانعی بر سر راه عبور هوا ایجاد نمیكنند كه این اصوات را اصطلاحاً اصوات بی واك [3] مینامند. در دسته دیگر اصوات ، تارهای صوتی مانع خروج طبیعی هوا از حنجره میگردند كه این باعث به ارتعاش درآمدن تارها شده و هوا به طور غیر یكنواخت و تقریباً پالس شكل وارد فضای دهان میشود. این دسته از اصوات را اصطلاحاً باواك[4] میگویند.
فركانس ارتعاش تارهای صوتی در اصوات باواك را فركانس Pitch و دوره تناوب ارتعاش تارهای صوتی را پریود Pitch مینامند. هنگام انتشار امواج هوا در لوله صوتی، طیف فركانس این امواج توسط لوله صوتی شكل میگیرد و بسته به شكل لوله ، پدیده تشدید در فركانس های خاصی رخ میدهد كه به این فركانس های تشدید فرمنت[5] میگویند.
از آنجا كه شكل لوله صوتی برای تولید اصوات مختلف، متفاوت است پس فرمنت ها برای اصوات گوناگون با هم فرق میكنند. با توجه به اینكه صحبت یك فرآیند متغییر با زمان است پس پارامترهای تعریف شده فوق اعم از فرمنت ها و پریود Pitch در طول زمان تغییر میكنند به علاوه مد صحبت به طور نامنظمی از باواك به بی واك و بالعكس تغییر میكند. لوله صوتی ، همبستگی های زمان-كوتاه ، در حدود 1 ms ، درون سیگنال صحبت را در بر میگیرد. و بخش مهمی از كار كدكننده های صوتی مدل كردن لوله صوتی به صورت یك فیلتر زمان-كوتاه میباشد. همان طور كه شكل لوله صوتی نسبتاً آهسته تغییر میكند، تابع انتقال این فیلتر مدل كننده هم نیاز به تجدید[6] ، معمولاً در هر 20ms یکبارخواهد داشت.
در شكل (1-1 الف) یك قطعه صحبت باواك كه با فركانس 8KHz نمونه برداری شده است دیده میشود. اصوات باواك دارای تناوب زمان بلند به خاطر پریود Pitch هستند كه نوعاً بین 2ms تا 20ms میباشد. در اینجا پریود Pitch در حدود 8ms یا 64 نمونه است. چگالی طیف توان این قطعه از صحبت در شكل (1-1 ب) دیده میشود[3].
اصوات بی واك نتیجه تحریك نویز مانند لوله صوتی هستند و تناوب زمان- بلند اندكی را در بر دارند ، همانگونه كه در شكل های (1-1 ج) و (1-1 د) دیده میشود ولی همبستگی زمان كوتاه به خاطر لوله صوتی در آنها هنوز وجود دارد.
[1] Vocal Cords
[2] Vocal Tracts
[3] Unvoiced
[4] Voiced
[5] Formant
[6] Update
-2- مدل سازی پیشگویی خطی
روش كدینگ پیشگویی خطی (LPC[1]) مبتنی بر مدل تولید صحبت در كد كننده های صوتی میباشد كه در اینجا در شكل (1-2) نشان داده شده است. برای استفاده از مدل لازم است كه معلوم شود سیگنال با واك است یا بیواك و اگر با واك است پریود Pitch مجاسبه گردد. تفاوت اصلی بین LPC و سایر كدكننده های صوتی در مدل كردن لوله صوتی است. در تحلیل LPC ، لوله صوتی به صورت یك فیلتر دیجیتال تمام قطب در نظر گرفته میشود.[4,1].
شكل (1-2): مدل تولید صحبت در LPC
با شركت دادن بهره G در این فیلتر داریم:
كه در آن p مرتبه فیلتر است. اگر S(n) خروجی فیلتر مدل صحبت و e(n) تحریك ورودی باشد، معادله فوق را در حوزه زمان به صورت زیر میتوان نوشت:
به عبارت دیگر هر نمونه صحبت به صورت تركیب خطی از نمونه های قبلی قابل بیان است و این دلیل نام گذاری كدینگ پیشگویی خطی (LPC) میباشد.
1-2-1- پنجره كردن سیگنال صحبت
روش LPC هنگامی دقیق است كه به سیگنالهای ایستان[2] اعمال شود، یعنی به سیگنالهایی كه رفتار آنها در زمان تغییر نمیكند. هر چند كه این موضوع در مورد صحبت صادق نیست، اما برای اینكه بتوانیم روش LPC را بكار ببریم، سیگنال صحبت را به قسمت های كوچكی بنام “فریم” تقسیم میكنیم كه این فریم ها شبه ایستان هستند. شكل (1-3) مثالی از قسمت بندی سیگنال صحبت را نشان میدهد. این قسمت بندی با ضرب كردن سیگنال صحبت S(n) ، در سیگنال پنجره W(n) انجام میشود.
شكل (1-3) : قسمت بندی سیگنال صحبت
معروف ترین انتخاب برای پنجره ، پنجره همینگ (Hamming) به صورت زیر است:
در اینجا N ، طول پنجره دلخواه به نمونه و عموماً در محدوده 160-320 انتخاب میگردد كه 240 یك مقدار نوعی میباشد . در شكل (1-4) چند پنجره معروف نشان داده شده است.
معمولاً پنجره های متوالی برروی هم همپوشانی دارند و فاصله بین آنها را پریود فریم میگویند. مقادیر نوعی برای پریود فریم 10-30ms میباشد. این انتخاب به نرخ بیت و كیفیت صحبت دلخواه ما بستگی خواهد داشت. هر چه پریود فریم كوچكتر باشد، كیفیت بهتری خواهیم داشت.
1-2-2- پیش تاكید سیگنال صحبت
شكل (1-5) یك توزیع طیفی نمونه سیگنال صحبت را برای اصوات باواك نشان میدهد. با توجه به افت طیف در فركانس های بالا وضعیف بودن فركانس های بالا در طیف صحبت ، تحلیل LPC در فركانس های بالا عملكرد ضعیفی خواهد داشت. برای تقویت مؤلفه های فركانس بالا صحبت ، آن را از یك فیلتر بالا گذر با تابع انتقال كه فیلتر پیش تاكید نامیده میشود، عبور میدهیم. مقدار نوعی ضریب a معمولاً در نظر گرفته میشود.
اگر S(n) سیگنال ورودی باشد، سیگنال پیش تأكید شده خواهد شد:
شكل (1-5) : پوشش طیفی نمونه اصوات باواك
1-2-3- تخمین پارامترهای LPC
در اینجا لازم است كه پارامترهای مدل LPC یعنی ضرایب ai فیلتر و بهره G تعیین گردند. اگر
تخمین S(n) از روی نمونه های قبلی باشد، ضرایب ai را چنان تعیین میكنیم كه خطای
روی همه نمونه های موجود مینیمم گردد. این مینیمم سازی ما را به معادلات خطی زیر میرساند:
و یا در فرم ماتریسی
R.a = –r
در معادلات فوق تعریف زیر را داریم:
كهr(i) ، iامین اتوكورلیشن سیگنال میباشد و فرض شده كه S(n) به طول N پنجره شده است. این فرمولاسیون به روش اتوكورلیشن معروف است و ماتریس R در آن یك ماتریس Toeplitz میباشد. چنین ماتریسی غیرمنفرد و همیشه معكوس پذیر است و در نتیجه همواره میتوانیم جوابی به صورت a = -R-1r داشته باشیم.
روش دیگری نیز بنام روش كواریانس وجود دارد. در این روش سیگنال صحبت S(n) پنجره نمیشود و به جای اتوكورلیش های r(i) ، كواریانس های r(i,j) برای عنصر (i,j) ماتریس R محاسبه میگردد:
در اینجا تضمین نمیشود كه ماتریس R معكوس پذیر باشد و ممكن است كه سیستم معادلات فوق جواب نداشته باشد. در این حالت فیلتر LPC ناپایدار میشود. از این رو در اینجا بیش از این به روش كواریانس نمیپردازیم.
راه سوم روش Burg است كه امتیاز عدم استفاده از پنجره را در روش كواریانس با امتیاز روش اتوكورلیشن یعنی تضمین پایداری فیلتر ، تركیب میكند. این روش از ساختار مشبك[3] فیلتر تمام قطب استفاده میكند[1] .
جواب دستگاه معادلات فوق را میتوان با یكی از روش های كلاسیك آنالیز عددی مثل حذف گوسی بدست آورد. اما چون R یك ماتریس Toeplitz است میتوان از روشی مؤثر بنام روش تكرار Durbin سود جست که بصورت زیر ضرائب فیلتر را تولید می کند :
که در آن ، ضریب j ام فیلتردر تكرار i ام و E(i) خطای پیشگویی مرتبه i است و بدین ترتیب ضرایب فیلتر بصورت زیر بدست خواهند آمد:
روش تكرار Durbin پارامترهای را كه ضرایب انعكاس نامیده میشوند و E(p) را بدست میدهد كه مربع بهره پیشگویی G و مورد نیاز فیلتر سنتز میباشد:
و چون داریم :
میتوانیم به جای E(p) ،r(0) را كد كرده و ارسال داریم و از آنجا به بهره G برسیم و این ترجیح داده میشود زیرا حساسیت r(0) به نویز كوانتیزاسیون كمتر از G است.
ضرایب انعكاس Ki یا PARCOR (برای PARtial CORrelation) نقش مهمی در تحلیل LPC دارند و دارای خواص زیر هستند:
ـ برای یك فیلتر پایدار یعنی یك فیلترLPC كه همه قطب های آن داخل دایره واحد باشد داریم:
كه این شرط بسیار مهمی است چرا كه با اطمینان از اینكه Ki بین –1 و +1 است حتی بعد از كوانیتزاسیون ، پایداری فیلتر تضمین خواهد شد. به علاوه محدوده (-1 , +1) كار كوانیتزاسیون را سادهتر میكند. ولی ai ها دارای چنین ویژگی نیستند كه پایداری فیلتر را تضمین نمایند و كوانیتزاسیون ai ها میتواند موجب ناپایداری شود.
[1] Linear Predictive Coding
[2] Stationary
[3] Lattice
آبهای جاری یا رودخانهها از مهمترین منابع آب هستند که نقش مهمی در تأمین آب مورد نیاز فعالیتهای مختلف کشاورزی، صنعت، شرب و تولید برق دارند. آگاهی از کمیت وکیفیت منابع آب یکی از نیازهای مهم در برنامهریزی و توسعه منابع آب، حفاظت و کنترل آن است. بدیهی است برای آگاهی ازكیفیت منابع آب وتولید اطلاعات جامع و کامل باید پایشهای دائمی انجام شود. چرا كه داشتن اطلاعات جامع، صحیح وقابل اطمینان با دورههای زمانی مناسب میتواند عامل مهمی در تصمیم گیریها و سیاستگذاریها باشد [13].
رودها نه تنها آب بلکه مقدار زیادی رسوب، کانیهای محلول و پودههای غنی از مواد غذایی حاصل از پسماند گیاهان و جانوران زنده و مرده
را به پایین دست حمل میکنند. تغییرات یک رودخانه نه تنها وابسته به سرزمینهای گوناگونی است که از آنها میگذرد، بلکه به تغییرات فصلی و تفاوت میان سالهای خشک و تر نیز مربوط میشود. تغییرات سالانه و فصلی حجم آب، رسوبات و مواد مغذی شسته شده در یک حوزه آبخیز ممکن است بسیار زیاد باشد، به ویژه در مناطق خشک که بخش بزرگی از بارش سالانه در چند طوفان میبارد [24].
صفحه:119
قیمت : چهارده هزار تومان
:
پیشرفتهای اخیر در فناوری نانو مربوط به تواناییهای جدید در زمینه اندازهگیری و كنترل ساختارهای منفرد در مقیاس نانو میباشد.
در علوم مختلف مهندسی، موضوع اندازهگیری و تعیین مشخصات از اهمیت كلیدی برخوردار است به طوری كه ویژگیهای فیزیكی و شیمیایی مواد، به مواد اولیهی مورد استفاده و همچنین ریزساختار یا ساختار میكروسكوپی به دست آمده از فرایند ساخت بستگی دارد.
به عنوان مثال برای شناسایی مواد ، بدیهی است كه نوع و مقدار ناخالصیها، شكل و توزیع اندازه ذرات، ساختار بلورین و مانند آن در ماهیت و مرغوبیت محصول اثر دارند.
در ضمن برای مطالعه ریزساختارها، نیاز بیشتری به ابزارهای شناسایی و آنالیز وجود دارد. در ریزساختار یا ساختار میكروسكوپی مواد، باید نوع فازها، شكل، اندازه، مقدار و توزیع آنها را بررسی كرد. در ادامه با توجه به اهمیت دستگاهها و روشهای اندازهگیری و تعیین مشخصات به طبقهبندی این روشها پرداخته میشود.
-1 روشهای میكروسكوپی
با استفاده از روشهای میكروسكوپی تصاویری با بزرگنمایی بسیار بالا از ماده بدست میآید. قدرت تفكیك تصاویر میكروسكوپی با توجه به كمترین قدرت تمركز اشعه محدود میشود. به عنوان مثال با استفاده از میكروسكوپهای نوری با قدرت تفكیكی در حدود 1 میكرومتر و با استفاده از میكروسكوپهای الكترونی، و یونی با قدرت تفكیك بالا در حدود یك آنگسترم قابل دسترسی است. این روشها شامل TEM،AFM ،SEM ،STM میباشد[6،5].
1-2 روشهای براساس پراش
پراش یكی از خصوصیات تابش الكترومغناطیسی میباشد كه باعث میشود تابش الكترومغناطیس در حین عبور از یك روزنه و یا لبه منحرف شود. با كاهش ابعاد روزنه به سمت طول موج اشعه الكترومغناطیسی اثرات پراش اشعه بیشتر خواهد شد. با استفاده از پراش اشعه ایكس، الكترونها و یا نوترونها و اثر برخورد آنها با ماده میتوان ابعاد كریستالی مواد را اندازهگیری كرد. الكترونها و نوترونها نیز خواص موجی دارند كه طول موج آن به انرژی آنها بستگی دارد. علاوه بر این هر كدام از این روشها خصوصیات متفاوتی دارند. مثلا عمق نفوذ این سه روش در ماده به ترتیب زیر میباشد. نوترون از اشعه ایكس بیشتر و اشعه ایكس از الكترون بیشتر میباشد.
1-3 روشهای طیف سنجی
استفاده از جذب، نشر و یا پراش امواج الكترومغناطیس توسط اتمها و یا مولكولها را طیف سنجی گویند. برخورد یك تابش با ماده میتواند منجر به تغییر جهت تابش و یا تغییر در سطوح انرژی اتمها و یا مولكولها شود، انتقال از تراز بالای انرژی به تراز پایینتر، نشر و انتقال از تراز پایین انرژی به تراز بالاتر، جذب نامیده میشود. تغییر جهت تابش در اثر برخورد با ماده نیز منجر به پراش تابش میشود.
طیف سنجی جرمی
روشهای طیف سنجی جرمی از تفاوت نسبت جرم به بار اتمها و یا مولكولها استفاده میکنند. عملكرد عمومی یك طیف سنجی جرمی بصورت زیر است:
1 – تولید یونهای گازی
2 – جداسازی یونها براساس نسبت جرم به بار
3 – اندازهگیری مقدار یونها با نسبت جرم به بار ثابت
1-4 روشهای جداسازی
در نمونههایی كه حاوی چند جز نا شناخته باشد، ابتدا باید از هم جدا شده و سپس اجزا توسط روشهای آنالیز مشخص میشود. جداسازی براساس تفاوت در خصوصیات فیزیكی و شیمیایی صورت میگیرد. به عنوان مثال حالت ماده، چگالی و اندازه از خصوصیات فیزیكی مورد استفاده و حلالیت نقطه جوش و فشار بخار از خواص شیمیایی مورد استفاده در جداسازی میباشد.
سوزنها
بسته به مد مورد استفادهی AFM و خاصیت مورد اندازهگیری از سوزنهای مختلفی استفاده میشود. زمانی كه فرایند اندازهگیری مستلزم وارد كردن نیروهایی فوق العاده زیاد از جانب سوزن به سطح باشد از سوزنهای الماسی استفاده میشود. همچنین سوزنهای با روكشهای الماس گونه برای این منظور مورد استفاده قرار میگیرند. به عنوان مثال در ایجاد نانو خراشها با نیروهایی به بزرگی N سرو كار داریم (این در حالیست كه در مد تماسی نیروی وارد بر سطح N میباشد) و باید از این نوع سوزنها استفاده كنیم. پارامترهای هندسی سوزن كه نوع كارایی سوزن و میزان دقت نتایج بدست آمده را تعیین میکنند عبارتند از شكل، بلندی، نازكی (زاویه راس هرم فرضی منطبق بر نواحی نوك)، تیز ی (شعاع دایره فرضی منطبق بر نوك).
شكل 1-2 انواع شکلهای سوزن شامل نوك تخت، نوك كروی، نوك T شكل و نوك تیز
سوزنهای T شكل برای نقشهبرداری و آشكارسازی فرورفتگیهای موجود در بخشهای دیواره مانند سطح نمونه به كار میروند. این در حالی است كه سوزنهای نوك تیز این قابلیت را ندارند.
1-6 نحوة بر هم كنش سوزن با سطح
شكل 1-3 به طور نمادین بزرگی و تغییرات نیروی بین سوزن و سطح را در فواصل مختلف سوزن از سطح نشان میدهد. جهت فلشها نشان دهنده نزدیك شدن (رفت) یا دور شدن (برگشت) سوزن نسبت به سطح میباشد.
شكل 1-3سمت چپ: نمایش نمادین بزرگی تغییرات نیروی بین سوزن و سطح در فواصل مختلف سوزن از سطح سمت راست: انحراف تیرك حین رفت و برگشت در نواحی مختلف فاصله از سطح (نیروی جاذبه یا دافعه).
نکته:
باید حین فرآیند جاروب سطحی فاصلة سوزن از سطح در محدودة مناسبی باقی بماند. چرا كه از یك طرف فاصلة زیاد (در این نواحی نیروی جاذبه است) موجب كم شدن میزان انحراف لرزانك و كاهش نسبت سیگنال به نویز در تعیین مولفة Z مكان سطح میشود. از طرف دیگر فاصلة بسیار نزدیك موجب وارد شدن نیروی زیاد به سطح میشود كه علاوه بر آسیب زدن به ساختار سطح و سوزن موجب كاهش درجة تفكیك خواهد شد.
1-7مدهای تماسی
مطابق تعریف به ناحیهای ” ناحیة تماس ” میگویند كه نیروی بین سوزن و سطح دافعه باشد. در مقایسه با مدهای دیگر نیروی وارد شده به سطح در مدهای تماسی بزرگتر است. از طرفی به دلیل تماس پیوستة سوزن با سطح حین فرآیند روبش نیروهای اصطكاك قابل توجهی (علاوه بر نیروی عمودی) به سطح و سوزن وارد میشود كه موجب آسیب دیدگی سطوح حساس و كند شدن سوزن میگردد.
شکل 1-4 مقایسه نمادین بین حالت تماسی و حالت غیرتماسی
بر این اساس مطالعة سطوح حساس و نرم با مدهای تماسی قدرت تفكیك اندازهگیری را كاهش میدهد و بعضاً باعث بروز خطای سیستماتیك در نتایج میشود. در عین حال بیشترین قدرت تفكیك و دقت اندازهگیری با AFM مربوط به بررسی سطوح سخت با سوزنهای نازك و فوق تیز و سخت در مد تماسی میباشد.
در این فصل برخی مفاهیم و نتایج در مورد مجموعههای ناهموار و مجموعههای ناهموار (فازی) كه در سایر فصول مورد استفاده قرار میگیرد را ارائه میكنیم.
برای كسب اطلاعات جامعتر در مورد این مفاهیم به [2] و [3] و [6] و [1] و [15] مراجعه شود.
1-2- مجموعههای ناهموار
1-2-1- یادآوری
– به گردایهای از اشیاء دوبدو متمایز مجموعه گوئیم.
– اگر A,B دو مجموعه باشند به ضرب دكارتی A در B گوییم.
– هر زیر مجموعهی یك رابطه از A به B نامیده میشود. اگر A=B باشد، به هر زیر مجموعه یك رابطه روی A گفته میشود. اگر R رابطهای روی A باشد و مینویسیم aRb.
– اگر R رابطهای روی A باشد، وارون R به صورت و متمم R به صورت نمایش داده میشود.
– رابطهی R روی مجموعهی A بازتابی است یعنی:
– رابطهی R روی مجموعهی A تقارنی است یعنی:
– رابطهی R روی مجموعهی A ترایایی است یعنی:
– رابطهی R روی مجموعهی A همارزی است یعنی، بازتابی، تقارنی و ترایایی است.
– اگر R رابطهی همارزی روی مجموعه A باشد، به كلاس همارزی a یا كلاس همارزی R تولید شده توسط a گوییم.
– فرض كنید U یك مجموعهی مرجع ناتهی باشد. مجموعهی توانی U را با P(U) نمایش میدهیم.
– برای هر ، متمم مجموعهی X را با XC نشان میدهیم، كه بهصورت UX تعریف میشود.
1-2-2- تعریف [1]
زوج كه در آن و یك رابطهی همارزی روی U است، یك فضای تقریب نامیده میشود.
1-2-3- تعریف [1]
فرض کنید یک فضای تقریب دلخواه باشد، برای تعریف تقریب ناهموار، نگاشت را تعریف میكنیم، با ضابطهی:
می باشد كه به طوریكه و را تقریب ناهموار پایینی از X در مینامیم و را تقریب ناهموار بالایی از X در مینامیم.
1-2-4- تعریف [1]
برای هر فضای تقریب ، مجموعهی ناهموار نامیده میشود اگر و تنها اگر برای بعضی از ، .
1-2-5- مثال
فرض كنید یك فضای تقریب باشد، بهطوریكه:
و رابطهی همارزی با كلاسهای همارزی زیر داده
شده باشد:
اگر یک مجموعه باشد آنگاه و و بنابراین یك مجموعهی ناهموار است.
1-2-6- مثال
فرض كنید یك فضای تقریب باشد به طوری كه و رابطهی همارزی به صورت زیر باشد.
اگر I={0.1.2.3.4.6.10.11} باشد آنگاه و .
1-2-7- تعریف [1]
زیر مجموعه X از U تعریفپذیر نامیده میشود اگر .
1-2-8- مثال
اگر همان فضای تقریب مثال 1-2-6 باشد و باشد آنگاه و بنابراین تعریفپذیر است.
1-2-9- توجه
اگر با كلاس همارزی P و ، آنگاه
1- بدین معنی است كه x قطعاً در كلاس P قرار دارد.
2- بدین معنی است كه x احتمالاً در كلاس P قرار دارد.
(3) بدین معنی است كه x قطعاً در كلاس P قرار ندارد.
1-2-10- تعریف
زمانی كه ، گوییم A(C) یك زیر مجموعهی ناهموار از A(B) است.
فرض كنید A© و A(B) دو مجموعهی ناهموار باشند ، اگر و تنها اگر و .
1-2-11- تعریف
متمم مجموعهی ناهموار A© را با نشان میدهیم و به صورت زیر تعریف میشود:
همچنین را به صورت زیر تعریف میكنیم:
1-2-12- مثال
اگر كلاسهای همارزی به شرح زیر میباشد.
: بور ریز مغذی ضروری برای گیاهان است و مطالعات نشان داده که این عنصر می تواند به عنوان یک ریزمغذی برای حیوانات و انسان نیز محسوب شود. در این پژوهش به منظور درک بهتر از نقش بور، اثر دوزهای مختلف اسید بوریک بر توانایی حیات، تکثیر، تمایز و فاکتورهای بیوشیمیائی سلولهای بنیادی مزانشیم مغز استخوان رت (MSCs) مورد بررسی قرار گرفت. مواد و روشها: MSCs تا سه پاساژ کشت و برای بررسی توان تکثیر و تمایز در محیطهای کشت فاقد ترکیبات استئوژنیک و واجد ترکیبات استئوژنیک آلوده به اسید بوریک قرار داده شد. در بخش اول که شامل بررسی توانائی تکثیر میشود، توانایی حیات با کمک تست MTT و تریپان بلو در زمانهای 12، 24و 36 ساعت بررسی و دوزهای 6 نانو، میکرو و میلیگرم بر میلیلیتر اسید بوریک و زمان 36 ساعت جهت انجام مطالعه انتخاب گردید. در ادامه، توانائی تکثیر با استفاده از توانایی تشکیل کلونی (CFA) و دو برابرشدگی جمعیتی (PDN)، مورفولوژی سلول ها توسط رنگ آمیزی فلوروسنس، سطح الکترولیتهای سدیم، پتاسیم با استفاده از فلیم فتومتر و میزان کلسیم، میزان فعالیت آنزیمهای LDH، ALP ،AST و ALT توسط کیتهای تجاری ارزیابی شد. در بخش دوم که شامل بررسی توانائی تمایز میشود، تاثیر دوز 6 نانو و میکروگرم بر میلیلیتر به عنوان دوزهای منتخب در زمانهای 5، 10، 15 و 21 روز بر توانایی زیستی، مورفولوژی، سطح الکترولیتها و فعالیت آنزیم هایLDH ،AST و ALT در سلول ها تمایز یافته بررسی شد. میزان تمایز با استفاده از روش کمی آلیزارین رد، غلظت کلسیم و فعالیت آنزیم ALP مورد ارزیابی قرار گرفته و داده ها توسط روش آماری ANOVA، آزمون tukey آنالیز و p<0/05 به عنوان سطح معنی دار در نظر گرفته شد. نتایج: نتایج بدست آمده نشان داد که در سلول های مزانشیم میزان توانایی زیستی در دوز و زمان کم تغییر نمی کند، اما افزایش در هر دو فاکتور زمان و دوز، کاهش فعالیت آنزیمهای متابولیکی و متعاقبا حیات را بدنبال داشت. در سلولهای استئوژنیک فقط در دوز بالا و با گذشت زمان منجر به کاهش توانایی حیات سلولی شد و دوز 6 نانوگرم هیچ اثری بر روی توانایی حیات نشان نداد ضمنا فاکتورهای تمایزی، الکترولیتها و آنزیمهای متابولیکی با افزایش زمان فقط در دوز 6 نانوگرم افزایش یافت. نتیجه گیری: تاثیر اسید بوریک به نوع سلول و شرایط تیمار وابسته است به گونه ای که در این مطالعه نشان داده شد که حساسیت سلولهای مزانشیم نسبت به سلولهای استئوبلاست بیشتر است. علاوه بر این دوز پایین اسیدبوریک دارای تاثیر مثبتی بر روند تمایز استخوان بود، لذا دوزهای پایین اسید بوریک می تواند نقش مفیدی بر سلامت سلول های مزانشیم و تمایز آنها به استئوبلاست داشته باشد.
کلید واژهها: سلول های بنیادی مزانشیم مغز استخوان، اسید بوریک، قابلیت حیات، آنزیمهای متابولیکی، تمایز
فصل اول: کلیات و هدف | |
1 | 1-1 سلولهای بنیادی ……………………………………………………………………… |
1 | 1-1- 1 تعریف سلولهای بنیادی………………………………………….. |
2 | 1-1-2 ویژگی خودنوزایی سلول بنیادی……………………. |
3 | 1-1-3 دستهبندی سلولهای بنیادی بر اساس توان تمایزی آنها ………………………………………………………. |
4 | 1-1-4 دستهبندی سلولهای بنیادی بر اساس منشا …………………………………………………….. |
4 | 1-1-4-1 سلولهای بنیادی جنینی………………………………………………… |
6 | 1-1-4-2 سلول بنیادی خون بند ناف……………………………………….. |
7 | 1-1-4-3 سلولهای بنیادی بزرگسالان……………………….. |
10 | 1-1-5 سلولهای مغز استخوان ………………………………. |
10 | 1-1-5-1 سلولهای بنیادی خونساز………………………….. |
11 | 1-1-5-2 سلول مزانشیم مغز استخوان…………………………….. |
12 | 1-2 تاریخچه سلول بنیادی مزانشیم ……………………………….. |
13 | 1-2-1 مورفولوژی سلول بنیادی مزانشیم ………………………….. |
14 | 1-2-2 کنام سلول بنیادی مزانشیم مغز استخوان …………………………………….. |
15 | 1-2-3 ویژگیهای اساسی سلول بنیادی مزانشیم ……………………. |
16 | 1-3 کاربردهای سلول بنیادی مزانشیم در درمان ……………….. |
17 | 1-3-1 ترمیم استخوان ………………………………………………. |
17 | 1-4 بافت استخوان …………………………………………….. |
20 | 1-5 استئوژنز(استخوانسازی) …………………………….. |
21 | 1-5-1 استخوانسازی اولیه یا جنینی ……………………….. |
23 | 1-5-2 استخوانسازی ثانویه ……………………………………………….. |
23 | 1-5-3 دوبارهسازی استخوان ………………………………………….. |
24 | 1-6 هتروژن بودن کشت سلول بنیادی مزانشیمی …………….. |
25 | 1-6-1 شرایط آزمایشگاهی تمایز مزانشیم به استخوان ……………………………………………… |
25 | 1-6-2 تنظیم مولکولی تمایز به استخوان سلولهای بنیادی مزانشیمی …………………………………………….. |
27 | 1-6-3 نقش سیگنال دهی Wnt در تمایز سلول های بنیادی مزانشیم به استخوان ………………………… |
29 | 1-7 عنصر بور …………………………………….. |
30 | 1-7-1 مشتقات بور ……………………………………………………….. |
32 | 1-7-2 فراوانی عنصر بور ……………………………………… |
32 | 1-7-3 تاریخچه مصرف بور ……………………………….. |
33 | 1-7-4 منابع طبیعی بور………………………………… |
34 | 1-7-5 اثرات بور برفلزات ضروری برای متابولیزم در جانوران …………………………………………. |
34 | 1-7-5-1 تاثیر بور بر فیزیولوژی بدن ………………………………….. |
36 | 1-7-5-2 تاثیر بور بر روی سرین پروتئازها …………………………………………………….. |
37 | 1-7-6 کاربرد بور در دارو ……………………………………………… |
37 | 1-7-7 سرطان ………………………………………………………. |
39 | 1-8 اثرات بور روی استخوان ……………………………………. |
40 | 1-9 بور و خون ……………………………………………………….. |
41 | 1-10 بور در گیاهان ………………………………………………………… |
42 | 1-11 سمیت بور ……………………………………………. |
44 | 1-12 محدوده استفاده بور ……………………………………………… |
45 | مروری بر مطالعات گذشته ……………………………………… |
47 | هدف مطالعه …………………………………………………………….. |
فصل دوم: مواد و روشها | |
50 | 2-1 انتخاب رت ………………………………………………………………. |
50 | 2-2 جدا سازی وتكثیر سلولهای بنیادی مزانشیم مغز استخوان ………………………………….. |
52 | 2-2-1 اجرای پاساژ ……………………………… |
54 | 2-3 اثبات مزانشیم بودن سلول های استخراج شده ………………………………………. |
54 | 2-3-1 تمایز به استخوان ……………………………………………………………. |
55 | 2-4 بررسی توان زیستی سلولها (دوز فایندینگ) ……………………………… |
55 | 2-4-1 رنگ آمیزی تریپان بلو ……………………………………………….. |
57 | 2-4-2 سنجش تترازولیوم (MTT) ……………………………………………………. |
57 | 2-4-2-1 مراحل انجام سنجش MTT)غیر استئوژنیک( ………………………………………………………………….. |
58 | 2-4-2-2 ترسیم منحنی استاندارد با استفاده از سنجش تترازولیوم ………………………………………………… |
59 | 2-4-2-3 مراحل انجام تست MTT استئوژنیک ……………………. |
60 | 2-5 انتخاب دوز مورد نظر ……………………………………….. |
60 | 2-6 بررسی توان تکثیری سلولهای بنیادی مزانشیم ……………. |
61 | 2-6-1 سنجش توانایی کلونیزایی ……………………………… |
63 | 2-6-2 محاسبه تعداد دوبرابرشدگی جمعیتی(PDN) ……………….. |
62 | 2-7 بررسی تغییرات مورفولوژیکی با استفاده از رنگ آمیزی فلوروسنت …………………………………………….. |
65 | 2-8 آزمونهای بیوشیمیایی در شرایط تمایز و غیرتمایزی …………………………………………. |
65 | 2-8-1تیمار و استخراج عصاره سلولی ……………………………… |
65 | 2-8-2 بررسی فعالیت آنزیمها ……………………………………… |
66 | 2-8-2-1 تهیه ی نمودار استاندارد برای آزمایش لاوری ……………………………………. |
66 | 2-8-2-2 ترانس آمینازها ………………………………… |
68 | 2-8-2-3 لاکتات دهیدروژناز………………………………… |
70 | 2-8-2-4 آنزیم آلکالین فسفاتاز ……………………………………………… |
72 | 2-8-3 سنجش میزان رسوب ماتریكس معدنی به كمك رنگ آلیزارین رد در سلول های استئوژنیک |
72 | 2-8-3-1 رسم منحنی استاندارد برای رنگ آمیزی آلیزارین رد ……………………….. |
73 | 2-8-3-2 بررسی رسوب ماتریکس استخوانی در نمونه های تیمار شده ………………………………… |
73 | 2-8-4 بررسی الکترولیت ها )کلسیم، سدیم و پتاسیم( ……………………. |
73 | 2-8-4-1 بررسی میزان کلسیم داخل سلولی با استفاده از کیت کلسیم به روش رنگ سنجی ………… |
74 | 2-8-4-1-1 مراحل انجام تست کلسیم در سلول های تمایز یافته )استئوبلاست( ………………………….. |
75 | 2-8-4-1-2 مراحل انجام اندازهگیری میزان کلسیم ….. |
76 | 2-8-4-2 اندازهگیری غلظت سدیم و پتاسیم سلول استئوژنیک و غیر استئوژنیک ………………………….. |
81 | 2-9 تجزیه و تحلیل آماری داده ها ………….. |
فصل سوم: نتایج | |
82 | 3-1 الف: نتایج مرحله اول ………………………………… |
82 | 3-1-1 رشد و تکثیر سلولهای بنیادی مزانشیم …………………… |
82 | 3-1-2 اثر اسید بوریک بر توانایی زیستی سلولهای بنیادی مزانشیم مغز استخوان رت …………………… |
85 | 3-1-3 بررسی مورفولوژی سلولهای تیمار شده ……………… |
87 | 3-1-4 نتایج توانایی کلونی زایی، تعداد دوبرابر شدگی جمعیت سلول …………………………………………….. |
89 | 3-1-5 اثر اسید بوریک بر فاکتورهای بیوشیمیایی …… |
91 | 3-1-6 میزان الکترولیتها………………………………………….. |
92 | 3-2 نتایج اثر دوزهای انتخابی اسید بوریک بر شاخص های تمایز به استئوبلاست ………………………….. |
92 | 3-2-1 توانایی زیستی سلولها در روند تمایز ……………………….. |
93 | 3-2-2 بررسی تغییرات مورفولوژیکی با استفاده از رنگآمیزی فلورسنت در نمونههای استئوژنیک |
96 | 3-2-3 بررسی اثر اسید بوریک بر فاکتورهای بیوشیمیایی سلولهای تمایز یافته ……………………………….. |
97 | 3-2-3-1 میزان معدنی شدن ماتریکس با سنجش رنگ آلیزارین رد ……………………………………………….. |
100 | 3-2-3-2 میزان رسوب کلسیم …………………………………….. |
101 | 3-2-3-3 بررسی فعالیت آنزیم آلکالین فسفاتاز …………. |
101 | 3-2-3-2 بررسی فعالیت آنزیم آسپارتات و آلانین ترانس آمیناز ……………………………………………………….. |
103 | 3-2-3-5 بررسی فعالیت لاکتات دهیدروژناز ……………….. |
103 | 3-2-3-6 بررسی سطح الکترولیت های سلولهای استئوژنیک …………………………………………… |
|
|
فصل چهارم: بحث و نتیجهگیری | |
105 | 4-3 اثر اسیدبوریک بر سلولهای مزانشیم ……………………….. |
105 | 4-1-1اثر اسید بوریک بر توانایی زیستی و توان تکثیر سلولها …………………………………………………… |
108 | 4-1-2 بررسی تاثیر اسید بوریک بر تغییرات مورفولوژیکی ………………………………………………………………… |
109 | 4-1-3 اثر اسید بوریک بر فاکتورهای بیوشیمیایی …. |
113 | 4-1-4 اثر اسید بوریک بر فعالیت آنزیمهای متابولیکی ……………………………………… |
116 | 4-2 اثر اسیدبوریک بر تمایز سلولی ……………………………… |
116 | 4-2-1 توانایی زیستی ……………………………………. |
119 | 4-2-2 بررسی سطح الکترولیت ها ……………………………………………. |
120 | 4-2-3 بررسی فاکتورهای استئوژنیک ……………………. |
124 | 4-2-4 بررسی اثر اسید بوریک بر آنزیم های متابولیکی ………….. |
127 | 4-2-5 تاثیر اسید بوریک بر مورفولوژی سلولهای تمایزی …………………………………………….. |
128 | 4-3 نتیجه گیری ……………………………………………………… |
129 | 4-4 پیشنهادات ……………………………………………………………. |
فصل پنجم:ضمیمه | |
131 | 5-1 روش تهیه محیط کشت …………………………………………………. |
131 | 5-2 تهیه ی فسفات بافر سالین PBS– ……………………………. |
132 | 5-3 تهیه ی فسفات بافر سالین مثبت PBS+……………………… |
132 | 5-4 روش تهیه محیط تمایزی استئوژنیک ………………………….. |
133 | 5-5 آماده سازی آلیزارین رد …………………………………………… |
133 | 5-6 روش تهیه محلول تریپانبلو 4/0 درصد ……………………………. |
133 | 5-7 تهیه کریستال ویولت ……………………………………… |
133 | 5-8 روش تهیه محلول MTT…………………………………. |
133 | 5-9 روش تهیه بافر شست و شو( ( Tris-Hcl-NaCl………………….. |
133 | 5-10 مواد لازم و روش تهیه بافر استخراج ( Tris-Hcl) ………… |
134 | 5-11 روش تهیه بافر ARS ………………. |
134 | 5-12 روش تهیه محلول BSA …………………………… |
134 | 5-13 روش تهیه محلول کمپلکس لاوری ………… |
135 | 5-14 روش تهیه بافر استخراج کلسیم …………………………. |
135 | 5-15 روش تهیه رنگ های فلورسنس هوخست و آکریدین اورنژ …. |
تعریف سلولهای بنیادی
به طور نرمال سلولهای تخصص یافته بدن مثل سلول پوست یا سلول عصبی در تمام دوره زندگی به همان صورت باقی میمانند، اما در بدن سلولهای دیگری به نام سلولهای بنیادی وجود دارند که توانایی تبدیل به سلولهای دیگری چون سلول قلب، عصبی، ماهیچه و ……. را دارا میباشند (1).
سلولهای بنیادی[1] سلولهایی غیر تخصصی[2] در بدن هستند که قابلیت تمایز به سلولهای تخصصیافته را با کسب کلیه اعمال سلولی تخصصی دارند. این سلولها دارای دو ویژگی اساسی یعنی توانایی تقسیم و تولید سلولهایی با خواص یکسان (خودنوزایی)[3]و ایجاد انواع سلولهای تمایزیافته میباشند (شکل 1-1)(1).
به دلیل اینکه این سلولها منشا تولید بقیه انواع سلولها هستند واژه بنیادی در مورد آنها به کار میرود به عبارت دیگر یک سلول بنیادی، سلولی است که به دلیل توانایی کسب کلیه اعمال تخصصی قابلیت تبدیل به سلولهای تخصص یافته را دارد. این سلولها جهت تمایز نیازمند دریافت سیگنال هستند. قاعدتاً یک سلول بنیادی تا قبل از دریافت یک سیگنال جهت تکامل به سلول تخصصی به صورت غیرتخصصی باقی میماند. سلولهای بنیادی در بدن انسان ویژگی تمایز به بسیاری از سلولها را دارند. همچنین به عنوان سیستم ترمیم به خدمت گرفته میشوند زیرا که توانایی تقسیم بدون محدودیت برای جایگزینی دیگر سلولها را دارا میباشند. وقتی یک سلول بنیادی تقسیم میشود هر سلول جدید بدست آمده این پتانسیل را دارد که سلول بنیادی باقی بماند یا به سلول تخصصی جدید مثل سلولهای خونی و … تمایز یابد (1).
شکل1-1: توانائی خودنوزائی و پتانسیل تمایز در سلولهای بنیادی (www.cellingbiosciences.com) |
1-1-2 ویژگی خودنوزایی سلول بنیادی
تکثیر یا خودتجدیدی، توانایی سلولها در تولید نسخههای یکسان از خود، توسط تقسیم میتوز در یک دوره زمانی مشخص است به صورتی که خصوصیات ژنتیکی و کاریوتایپی در سلولهای دختری عینا شبیه سلولهای مادری باقی میماند.
خودتجدیدی سلولها بنیادی تحت تاثیر سیگنالهای درونی سلول بنیادی که به صورت تقسیم متقارن و نامتقارن است، قرار دارد. علاوه بر این سیگنالهای درونی، خودتجدیدی سلولهای بنیادی تحت تاثیر عوامل محیطی چون آسیب یا صدمه نیز میباشد و تحت تاثیر این شرایط یک سلول بنیادی ممکن است دو سلول دختری ایجاد کند که یا به صورت سلولهای بنیادی باقی میمانند یا متمایز میشوند (2).
1-1-3 دستهبندی سلولهای بنیادی بر اساس توان تمایزی آنها:
سلول های بنیادی بر اساس توان تمایزی به صورت زیر دسته بندی می شوند:
الف) همه توان[4]: واژه Totipotent از دو قسمت Toti= همه، potent= توانایی تشکیل شده است. از جمله این سلولها میتوان بلاستومرهای یک جنین دو سلولی را نام برد که قادر است همه سلولهای بدن یک فرد کامل را بسازد. این سلولها میتوانند به انواع سلولهای جنینی و برون جنینی تمایز پیدا کنند و اندامهای قابل زیستی را ایجاد نمایند.
ب) پر توان[5]: این نوع سلولها قادر به ساخت غالب یا همه سلولهای فرد هستند. به عنوان مثال سلولهای بنیادی جنینی تحت شرایط خاص میتوانند یک فرد را بسازند ولی قادر به ایجاد سلولهای جفت نیستند. سلولهای بنیادی جنینی و سلولهای پر توان القایی جز این دسته از سلولهای بنیادی میباشند.
پ)چند توان[6]: سلولهای بنیادی هستند كه به تعداد محدودتری از انواع سلول تمایز پیدا میکنند (در بافتهای بزرگسال نظیر مغز، مغز استخوان، كبد و… وجود دارند).
ت) یک توان[7]: توانایی ایجاد یک نوع سلول را دارند ولی توانایی خود نوزایی خود را حفظ کردهاند. مانند سلولهای بنیادی اسپرماتوگونی که توانایی تولید اسپرم را دارند (شکل 1-2) (3).
شکل 1-2: دستهبندی سلولهای بنیادی براساس پتانسیل تمایزی آنها (www. njavan.com).
1-1-4 دستهبندی سلولهای بنیادی بر اساس منشا
سلولهای بنیادی بر اساس منشا به سه دسته اصلی تقسیمبندی میشوند
1-1-4-1 سلولهای بنیادی جنینی
کشت موفقیت آمیز آزمایشگاهی سلولهای بنیادی جنینی انسانی (ESCs) [8] در سال 1998 توسط تامپسون و همکارانش انجام گرفت.
سلولهای بنیادی جنینی از توده سلولی داخلی (ICM)[9]جنین در مرحله بلاستوسیت به دست میآیند. بلاستوسیت مرحلهای از تکوین پیش از لانهگزینی در پستانداران است که معمولا چهار تا پنج روز بعد از لقاح ایجاد میشود. در این مرحله جنین 200-100 سلول دارد و به صورت کرهای توخالی است. این کره متشکل از یک لایه سلولی برونی (تروفواکتودرم) است که به طور معمول پس از لانهگزینی در رحم، بخشی از جفت را میسازد. همچنین این کره مجتمعی از سلولها (حدود 30-20سلول) در داخل کره به نام توده سلولی داخلی است که قادرند لایههای مختلف جنین کامل را تولید کنند (شکل 1-3) (4).
شکل 1-3: تصویر شماتیک از سلولهای بنیادی جنینی که توانایی ایجاد سلولهای هر سه لایهی زایندهی جنینی را دارا میباشد و همچنین سلولهای بنیادی بالغ که توانایی خودنوزایی و تمایز را دارند (5) .
1-1-4-2 سلول بنیادی خون بند ناف[10]
خون بند ناف غنی از سلولهای بنیادی و سلولهای خونساز است. این سلولها بسیار پرتوان و نامیرا هستند و همچنین در اثر تکثیرهای پی در پی دچار پیری نمیشوند، به طوریکه با تزریق و یا جایگزینی آنها در بافتهایی که آسیب جدی دیدهاند میتوانیم به بهبودی و تشکیل سلولهای جدید بافت کمک نمائیم. خون بند ناف دارای 6/0 تا 1 درصد سلولهای پیشساز خونی و بنیادی خونساز است. ژله وارتون بند ناف منبع غنی از موکوپلیساکاریدها بوده که سلولهای بنیادی بالغ نیز در آن یافت میشود (6). خون بند ناف دارای مزایای زیادی چون محدود نبودن به اهداکننده، بلوغ کمتر سلول نسبت به سلولهای فرد بالغ و کاهش احتمال پسزدگی پس از پیوند میباشد (7). همچنین خون بند ناف را میتوان ذخیره نمود و در موارد نیاز برای خود شخص یا فرد دیگری استفاده نمود. استفاده از این سلولها در درمان بیماریها چندان معمول نیست ولی این سلولها در درمان دیابت نوع 1، بیماریهای قلبی و عروقی، لوپوس اریتماتوس، بیماریهای نورولوژیک مانند سکته مغزی، پارکینسون و آلزایمر، کمخونیها و نقص ایمنی و بیماریهای کبدی به کار میرود (شکل 1-4) (6).
شکل 1-4: نمایی از بند ناف (رگهای بند ناف (2 سرخرگ و یک سیاهرگ) و ژله وارتون[11] و غشا خارجی) (www.mdpi.com).
1-1-4-3 سلولهای بنیادی بزرگسالان (Adult stem cells):
انواع سلول بنیادی بالغ
بسیاری از بافتهای بالغ حاوی سلولهای بنیادی هستند و قدرت تمایز و توانایی خود نوزایی را دارند، به این سلولها سلولهای بنیادی بالغ گفته میشود. در زیر چند مثال از این نوع سلولها آورده شده است:
الف) سلول بنیادی عصبی
سلول بنیادی عصبی، سلول پرتوانی است که:
1) قادر به تکثیر و تولید پیشسازهایی است که قابلیت تبدیل به سه نوع اصلی سلولهای سیستم اعصاب مرکزی را دارند: یعنی آستروسیتها، الیگودندروسیتها و نورونها.
2) این سلولها توانایی خودنوزایی را داشته و همچنین به صورت متقارن و نامتقارن تقسیم میگردند.
3) یک سلول بنیادی عصبی خصوصیت پرتوانی خود را تا زمانی طولانی حفظ میکند (8).