یکی از روشهای تولید پوششهای نانوساختاری، روش آبکاری الکتریکی است که ذرات در اثر اعمال جریان الکتریکی در پوشش قرار میگیرند[1]. فرآیند آبکاری الکتریکی روشی است که در آن نمونهی موردنظر بهوسیلهی لایههای چسبیده و نازک از فلز دیگر پوشش داده میشود تا ظاهر و یا خواص موردنظر آن بهتر شود. این فرآیند که شامل پوشش دادن یک فلز، آلیاژ و یا کامپوزیت بر روی فلزی دیگر با استفاده از جریان برق است، از بیش از صد سال پیش مورد توجه محققان قرار گرفته است و هدف ایجاد پوششی با ویژگیهای خاص از فلز است. با استفاده از این روش میتوان لایههای نازک از مرتبهی چند نانومتر هم تولید نمود[2].
لایهنشانی یک فلز یا آلیاژ به وسیلهی جریان الکتریکی در حضور میدان مغناطیسی اعمالی بهعنوان الکترولیز مغناطیسی[1] (ME) یا لایهنشانی الکترولیتی مغناطیسی[2] شناخته میشود[3]. در حال حاضر بررسی فصل مشترک بین خواص مغناطیسی مواد و الکتروشیمی یکی از زمینههای جذاب مورد مطالعه در علوم بین رشتهای است و با مطالعهی اثرات هر یک از این دو موضوع بر دیگری، میتوان به نتایج سودمندی دست یافت. به عنوان مثال در حین فرآیند آبکاری، میدان مغناطیسی میتواند برای افزایش نرخ لایهنشانی گونههای مغناطیسی و غیرمغناطیسی بهکارگرفته شود[4]. هنگامی که میدان مغناطیسی بهطور موازی با سطح الکترودها بر یک پیل الکتروشیمیایی وارد میشود، نیرویی به نام نیروی لورنتس عمود بر چگالی جریان و میدان مغناطیسی بر تمامی ذرات بارداری که در محلول الکترولیت حرکت میکنند وارد میشود و بر خواص لایههای ساختهشده اثر میگذارد. تأثیر نیروی اعمالی بر مواد مختلف متفاوت است و بسته به اینکه فلز آبکاری شده مغناطیسی و یا غیرمغناطیسی باشد، نتایج متفاوتی از اعمال میدان میتوان بهدست آورد[3،4]. ازجمله ویژگیهای بررسی شده نیز میتوان به ریختشناسی سطح، ساختار بلوری و همچنین جوانهزنی در حضور میدان مغناطیسی اشارهکرد. میدان مغناطیسی خارجی همچنین میتواند بر فرآیند آبکاری الکتریکی آلیاژها نیز اثرگذار باشد[6]. بهطور مثال برای آلیاژ نیکل-آهن ترکیب آلیاژ با تغییر چگالی شار مغناطیسی تغییر میکند[7]. همچنین ریختشناسی، زبری، جهت کریستالوگرافی لایههای پوشش دادهشده[7] و خواص مغناطیسی این آلیاژ[5] نیز تحت تأثیر میدان مغناطیسی قرار میگیرد. با این وجود ویژگیهای بسیاری از جمله خواص مغناطیسی لایههای نازک مغناطیسی و غیرمغناطیسی تولیدشده در ابعاد نانویی با استفاده از این روش هنوز بهطور کامل مشخص نیست که این امر باعث ایجاد انگیزه در محققان و دانشمندان رشتههای فیزیک، شیمی و علم و مهندسی مواد برای مطالعه در این زمینه شده است.
فرآیندهای الکتروشیمیایی به خاطر توانایی قابل توجهشان نسبت به سایر روشها از قبیل پوششدهی از بخار فیزیکی (PVD) و پوششدهی از بخار شیمیایی (CVD) در ایجاد ساختارهای یکنواخت و بدون حفره، برای تولید پوشش مس استفاده میشوند. در اکثر موارد مشاهده شده است که ریزساختار پوششهای مس بهراحتی در دمای اتاق تبلور مجدد مییابند که منجر به ایجاد مشکلات اساسی در ارتباط با خواص الکترونیکی این پوششها میشود. تولید و ایجاد میدان مغناطیسی میتواند یک روش امیدبخش برای کنترل منحصربهفرد میکروساختار سطح باشد[8]. با انجام آبکاری در حضور میدان مغناطیسی جریان هیدرودینامیکی مغناطیسی[3] در محلول الکترولیت بهوسیلهی برهمکنش الکترومغناطیسی که جریان فارادی و میدان مغناطیسی است القا میشود. محققان زیادی به بررسی تأثیر جریان هیدرودینامیکی مغناطیسی بر خواص میکروساختاری سطح پوششهای مس آبکاریشده و واکنش الکتروشیمیایی پرداختهاند که از آنجمله میتوان به تحقیقات هیندز[4] و همکاران[9] اشاره کرد که نشان دادند در حضور میدان مغناطیسی کوچکتر از 0.5 تسلا تغیر قابلتوجهی چه در ریختشناسی سطح و چه در بافت پوشش ایجاد نمیشود. همچنین با افزایش میدان مغناطیسی تا میزان 0.6 تسلا تأثیر میدان مغناطیسی بر فرآیند آبکاری الکتریکی مستقل از جهت میدان و نحوهی قرارگیری الکترود است. با این حال آبکاری الکتریکی مس در حضور میدان مغناطیسی بهطور سیستماتیک بررسی نشدهاست که دلیل آن میتواند به پذیرفتاری مغناطیسی بسیار کوچک مولی برگردد. لذا پتانسیل مغناطیسی در یک میدان ثابت) که c غلظت، نفوذپذیری مغناطیسی مولی یونی و نفوذپذیری فضای آزاد است( بسیار کوچک و قابل چشمپوشی در مقایسه با اثر هیدرودینامیکی مغناطیسی است.
تعدادی تحقیق نیز در مورد تأثیر میدان مغناطیسی بر آبکاری الکتریکی نیکل وجود دارد. بر اساس مطالعات مربوط به بازتاب الکترونهای تفرق یافته پرانرژی (RHEED) نیکل، آهن و کبالت یانگ[5] گزارش داد که یک میدان مغناطیسی اعمالی اثر ناچیزی بر جهت اصلی الکترونها دارد. اما افزایش در زبری سطح در اثر اعمال میدان عمود بر سطح الکترودها مشاهده شد[10]. بریلاس[6] و همکاران[11] بیان کردند که اعمال میدان مغناطیسی درحین فرآیند آبکاری الکتریکی نیکل چه بهصورت موازی و چه عمود بر سطح الکترودها، منجر به افزایش تراکم دانههای نیکل و رشد با اندازه و شکل هندسی منظمتر میشود و نتیجه گرفتند که ریختشناسی سطح به شدت تحت تأثیر میدان مغناطیسی قرار میگیرد.
اخیراً باند و همکاران[12] تأثیر میدان مغناطیسی عمود بر رفتار الکتروشیمی مس و نیکل را بررسی کردند. افزایش چگالی جریان حدی با میدان بر اساس افزایش در جریان همرفت ایجاد شده به وسیلهی جریان هیدرودینامیکی مغناطیسی توضیح داده شد. مشاهده شد که مواد با دانههای ریزتر در حضور میدان مغناطیسی برای نیکل آبکاری شده ایجاد میشود که این عامل به افزایش در جریان همرفتی که منجر به افزایش در نرخ لایهنشانی میشود نسبت دادهشد.
مطالعات مربوط به تأثیر میدان مغناطیسی بر فرآیندهای الکتروشیمیایی معمولا با میدان موازی با سطح الکترودها انجام میشود. در این حالت نیروی هیدرودینامیکی مغناطیسی حداکثر است. اگر هدف محدود کردن جریان همرفتی بر اثر نیروی هیدرودینامیکی مغناطیسی و مطالعهی نیروهای پارامغناطیس و اثرات گرادیان میدان باشد، میدان مغناطیسی بهصورت عمود بر سطح الکترودها اعمال میشود.
در این تحقیق با استفاده از فرآیند آبکاری الکتریکی ضربانی، پوشش نانوساختاری از فلزات نیکل و مس تهیه گردید و خواص ریزساختار، مغناطیسی و ریختشناسی این فلزات در دو حالت بدون اعمال میدان مغناطیسی و اعمال میدان حین انجام فرآیند آبکاری الکتریکی ضربانی با یکدیگر مقایسه شد.
1-1- تقسیم بندی مواد از لحاظ خاصیت مغناطیسی
از لحاظ خواص مغناطیسی و با توجه به چگونگی پاسخ به میدان مغناطیسی، مواد به دستههای مختلفی تقسیمبندی میشوند که در زیر آمده است:
الف) مواد پارامغناطیس
ب) مواد دیامغناطیس
ج)مواد فرومغناطیس
د)مواد پادفرومغناطیس
ه) مواد فریمغناطیس
1-1-1- مواد پارامغناطیس
در مواد پارامغناطیس، قابلیت مغناطیسی شدن ماده یا همان پذیرفتاری مغناطیسی( ) دارای مقدار مثبت کوچکی است. مقدار برای این مواد در دمای اتاق بین تا میباشد. در این مواد گشتاور مغناطیسی اجزاء سازنده صفر نیست بلکه طرز قرار گرفتن این اجزاء طوری است که گشتاور مغناطیسی کل ماده صفر میشود. در حین اعمال میدان مغناطیسی تنها تعدادی از گشتاورهای مغناطیسی با جهت میدان همراستا میشوند. در دماهای معمولی وابستگی اندکی به شدت میدان اعمال شده دارد. در حوالی صفر مطلق، مواد پارامغناطیس میتوانند به اشباع مغناطیسی برسند[13]. در جدول 2-1 پذیرفتاری مغناطیسی تعدادی از مواد پارامغناطیس ذکر گردیده است.
جدول 2‑1 تأثیرپذیری یا پذیرفتاری مغناطیسی تعدادی از مواد پارامغناطیس[13]
ماده | تأثیرپذیری مغناطیسی
(10-6 emu mol-1Oe-1) |
آلومینیوم | 165 |
کروم | 180 |
سولفات کروم | 11800 |
سولفات مس(CuS | 12660 |
کلرید کبالت (Co ) | 1460 |
سولفات گادولونیوم
(Gd2 ) |
511200 |
اکسیژن ( ) | 20.8 |
1-1-2- مواد دیامغناطیس
در مواد دیامغناطیس دارای مقدار منفی بوده و اندازهی آن از مرتبهی است. الکترونها به صورت جفت بوده و گشتاور خالص اجزای سازندهی این مواد (اتمها، مولکولها یا یونها) صفر است. در این حالت تقریبا مستقل از دما و شدت میدان اعمال شده به جسم است. علت منفی بودن در این مواد به این علت است که تغییرات گشتاور مغناطیسی در حضور میدان مغناطیسی خارجی فقط ناشی از قانون لنز است. بر اساس این قانون، نیروی محرکهی القایی حاصل از تغییر شار مغناطیسی دارای قطبهایی است که میدان مغناطیسی القایی حاصل از جریان آن با تغییر شار مغناطیسی اصلی مخالفت میکند. بنابراین با افزایش یا کاهش میدان اعمالی سرعت حرکت الکترونها بهگونهای است که اثر میدان خارجی را تقلیل دهد[13]. در جدول 2-2 پذیرفتاری مغناطیسی تعدادی از مواد دیامغناطیس ذکرگردیده است.
جدول 2‑2: تأثیرپذیری یا پذیرفتاری مغناطیسی تعدادی از مواد دیامغناطیس[14]
ماده | تأثیرپذیری مغناطیسی
(10-6 emu mol-1Oe-1) |
آرگون | -19.6 |
کربنات کلسیم | -280 |
کربن (الماس) | -38.2 |
کربن (گرافیت) | -5.9 |
مس | -6.0 |
طلا | -5.46 |
هلیوم | -28 |
سرب | -1.66 |
جیوه | -23 |
1-1-3- مواد فرومغناطیس
مواد فرومغناطیس حتی در غیاب میدان خارجی سعی در موازی کردن گشتاور مغناطیسی اتمهای مجاور داشته و یک نظم مغناطیسی موسوم به نظم فرومغناطیسی بهوجود میآورند. این نظم ناشی از نیروهای تبادلی بین اسپین الکترونهای اتمهای مجاور است. در این مواد گشتاور مغناطیسی اجزای سازنده صفر نیست و با اعمال میدان مغناطیسی گشتاورهای مغناطیسی آنها در جهت اعمالشده همراستا میشود. در مواد فرومغناطیس مقدار عددی مثبت و از مرتبه چند صد تا چند میلیون است. به دما وابسته است. با افزایش درجه حرارت خواص مغناطیسی ضعیف شده و سرانجام بسته به جنس ماده فرومغناطیسی در یک درجه حرارت معین موسوم به دمای کوری[1] خواص مغناطیسی از بین رفته و رفتار آن از لحاظ مغناطیسی مشابه رفتار مواد پارامغناطیسی میشود. از مهمترین مواد فرومغناطیس میتوان به آهن، نیکل، کبالت و فلزات قلیایی خاکی اشاره کرد[13].
1-1-4- مواد پاد فرومغناطیس
در مواد پادفرومغناطیس اجزاء مغناطیسی دارای گشتاور مغناطیسی خالص مثبت هستند ولی این گشتاورها خلاف جهت هم بوده و یکدیگر را خنثی میکنند. پادفرومغناطیسها در دمایی موسوم به دمای نیل[2] که آن را با نشان میدهند، در اثر آشفتگی حرارتی رفتار پارامغناطیس دارند. در دماهای پایینتر از دمای نیل با افزایش دما قابلیت مغناطیسی آنها افزایش مییابد. دمای نیل دمایی است که در آن خواص مغناطیسزدا در جسم به حداقل رسیدهاند. در این مواد عددی مثبت و بین تا است. به طرز خاصی به دما وابسته است. با افزایش دما از صفر مطلق، بهطور یکنواخت زیاد میشود. در دمای نیل به حداکثر مقدار خود میرسد. با افرایش دما از دمای نیل مقدار از قانون کوری پیروی کرده و کاهش مییابد. در این مواد معمولاً دو شبکه فریمغناطیس وجود دارد به قسمی که گشتاور مغناطیسی حوزههای متعلق به هرکدام از دو شبکه مزبور پادموازی بوده و اثر مغناطیس هم را از بین میبرند[13].
فرم در حال بارگذاری ...