وبلاگ

توضیح وبلاگ من

شبیه سازی عددی سلول خورشیدی مبتنی بر نانو نوار گرافن با استفاده از روش …

 
تاریخ: 28-11-99
نویسنده: فاطمه کرمانی

1-1-           پیشگفتار

 

انرژی خورشیدی منحصربه‌فردترین منبع انرژی تجدید پذیر در جهان است و منبع اصلی تمامی انرژی‌های موجود در زمین می‌باشد. این انرژی به صورت مستقیم و غیرمستقیم می­تواند به اشکال دیگر انرژی تبدیل گردد[[i]].
به طور کلی انرژی متصاعد شده از خورشید در حدود  3.8e23 کیلووات در ثانیه می‌باشد. ایران با داشتن حدود ۳۰۰ روز آفتابی در سال جزو بهترین کشورهای دنیا در زمینه پتانسیل انرژی خورشیدی می‌باشد. با توجه به موقعیت جغرافیایی ایران و پراکندگی روستاهای کشور، استفاده از انرژی خورشیدی یکی از مهم­ترین عواملی است که باید مورد توجه قرار گیرد. استفاده از انرژی خورشیدی یکی از بهترین راه های برق رسانی و تولید انرژی در مقایسه با دیگر مدل­های انتقال انرژی به روستاها و نقاط دور افتاده در کشور از نظر هزینه، حمل‌نقل، نگهداری و عوامل مشابه می‌باشد[1].
با توجه به استانداردهای بین‌المللی اگر میانگین انرژی تابشی خورشید در روز بالاتر از ۳.۵ کیلووات ساعت در مترمربع باشد استفاده از مدل­های انرژی خورشیدی نظیر کلکتورهای خورشیدی یا سیستم‌های فتوولتائیک بسیار اقتصادی و مقرون به صرفه است. این در حالی است که در بسیاری قسمت­های ایران، انرژی تابشی خورشید بسیار بالاتر از این میانگین بین‌المللی می‌باشد و در برخی از نقاط حتی بالاتر از ۷ تا ۸ کیلووات ساعت بر مترمربع اندازه­گیری شده است ولی بطور متوسط انرژی تابشی خورشید بر سطح سرزمین ایران حدود ۴.۵ کیلو وات ساعت بر مترمربع است[1].

عکس مرتبط با اقتصاد

1-2تاریخچه­ی سلول­های خورشیدی

 

اثر فوتوولتاییک اوّلین بار در سال 1839 توسط بکویه­رل[1]، فیزیکدان فرانسوی، به صورت تجربی نشان داده شد[[ii]] . پس از آن چارلز فریتز[2] در سال 1883 توانست اوّلین سلول خورشیدی حالت جامد را بسازد. او نیمه­هادی سلنیم را با لایه­ی نازکی از طلا پوشانده بود تا بتواند یک پیوند شکل دهد و با این کار توانسته بود به بازده 1% دست یابد. در سال 1946 راسل اُهل[3] موفّق شد یک سلول خورشیدی با پیوند مدرن بسازد.
با این حال اوّلین سلول خورشیدی کاربردی[4] در سال 1954، در آزمایشگاه بل[5]، ساخته شد. چاپین[6]، فولر[7] و پیرسون[8] برای ساخت این سلول از یک پیوند p-n نفوذی سیلیکون[9] استفاده کرده توانستند به بازده 6% دست یابند[2].
سلول­های پیشرفته­ی اوّلیه با استفاده از ویفر[10]های سیلیکن و ژرمانیوم به دست آمدند. پس از آن سلول­هایی ساخته شدند که در آن­ها از لایه­های نازک[11] سیلیکن یا دیگر نیمه­هادی­ها به جای ویفر استفاده می­شد. هم اکنون علاوه بر این دو نوع سلول خورشیدی از سلول­های متعدّد دیگری چون سلول­های پلیمری، ارگانیک، رنگ دانه­ای( حسّاس شده با رنگ[12])، چند پیونده و … بهره گرفته می­شود.
در این فصل انواع مهم سلول­های خورشیدی، که در سه نسل دسته­بندی شده­اند، به شکل مختصر مورد بررسی قرار می­گیرند: نسل اوّل(

پایان نامه های دانشگاهی

 شامل سلول­های کریستالی سیلیکون[13]) نسل دوم( شامل سلول­های گوناگونی که در آن­ها از لایه­های نازک نیمه­هادی استفاده می­شود) و نسل سوم( شامل سلول­هایی که طرّاحی آن­ها به گونه ایست که می­توانند بازدهی فراتر از حدّ شاکلی- کوییزر دست یابند).

 

1-3-           انواع سلول­های خورشیدی

 

 

-3-1-       نسل اوّل سلول های خورشیدی (سلول های کریستالی سیلیکون)

 

در این دسته از سلول­های خورشیدی، از ویفرهای سیلیکون به عنوان نیمه­هادی فعّال استفاده می­شود. سیلیکون با گاف انرژی ev1.12 مادّه­ای بسیار مناسب برای جذب طیف خورشید به حساب می­آید. همچنین از نظر فراوانی در طبیعت دومین عنصر به شمار می­رود. این بدان معناست که دست یابی به سیلیکون خام هزینه­ی چندانی نخواهد داشت و نگرانی­ای هم برای اتمام منابع آن وجود ندارد.
برای دست­یابی به هدایت بالا، افزایش طول عمر سلول و جلوگیری از افت بازده( بر اثر بازترکیب حامل­ها) سیلیکون را به صورت تک کریستال و با کیفیت بالا مورد استفاده قرار می­دهند. گاهی نیز برای کاهش هزینه­ها از سیلیکون چند- کریستال بهره گرفته می­شود.

 

1-3-1-1-      فرآیند رشد کریستال­های نیمه­هادی ها

 

شرایط رشد بلور( کریستال)های نیمه­هادی که برای ساخت قطعات الکترونیک استفاده می­شود بسیار دقیق­تر و مشکل­تر از شرایط سایر مواد است. علاوه بر این که نیمه­هادی­ها باید به صورت کریستالی در دسترس باشند، باید خلوص آن­ها نیز در محدوده­ی بسیار ظریفی کنترل شود. مثلا تراکم بیشتر ناخالصی­های مورد استفاده در بلورهای Si امروزی کمتر از 1 قسمت در ده میلیارد است. چنین درجاتی از خلوص مستلزم دقّت بسیار در استفاده و به کارگیری مواد در هر مرحله از فرآیند ساخت است[[iii]].
نیمه­هادی­های تک عنصری Si و Ge از تجزیه­ی شیمیایی ترکیب­هایی مانند GeO2، SiCl4 و SiHCl3 به دست می­آیند. پس از جداسازی و انجام مراحل اوّلیه­ی خالص­سازی، ماده­ی نیمه­هادی را ذوب کرده و به صورت شمش­[14]هایی در می­آورند. Si یا Ge به دست آمده بعد از مرحله­ی بازپخت[15] به صورت چند بلوری است.
در صورت عدم کنترل فرآیند سرمایش، نواحی بلوری دارای جهت­های کاملا تصادفی خواهند بود. برای رشد بلور فقط در یک جهت، لازم است که کنترل دقیقی در مرز بین مادّه­ی مذاب و جامد، در هنگام سرد کردن، انجام پذیرد[3].
یک روش متداول برای رشد تک-کریستال­ها، سرد کردن انتخابی ماده­ی مذاب است به گونه­ای که انجماد در راستای یک جهت بلوری خاص انجام پذیرد. برای مثال در نظر بگیرید یک ظرف از جنس سیلیکا حاوی Ge مذاب باشد؛ می توان طوری آن را از کوره بیرون آورد که انجماد از یم انتها شروع شده و به تدریج تا انتهای دیگر پیش رود. با قرار دادن یک دانه[16]­ی بلوری کوچک در نقطه­ی شروع انجماد می توان کیفیت رشد بلور را بالا برد. اگر سرعت سرد کردن به دقّت کنترل شود و مکان فصل مشترک جامد و مذاب به آهستگی در طول مذاب حرکت داده ش.ود، اتم­های ژرمانیوم همراه با سرد شدن بلور به صورت شبکه­ی الماسی آرایش می­یابند. شکل بلور به دست آمده توسط ظرف ذوب تعیین می­شود. Ge، GaAs و دیگر بلورهای نیمه­هادی معمولا با این روش، که روش بریجمن[17] افقی نامیده می­شود، رشد داده می­شوند. در شکل دیگری از این روش، ناحیه­ی کوچکی از ماده­ی بلوری ذوب شده و سپس ناحیه­ی مذاب طوری به طرف دیگر حرکت داده می­شود که در پشت ناحیه­ی مذاب و در هنگام حرکت آن یک بلور تشکیل شود[3].
یکی از معایب رشد بلور در ظرف مذاب این است که ماده­ی مذاب با دیواره­های ظرف تماس پیدا می­کند و در نتیجه­ در هنگام انجماد تنش­هایی ایجاد می­شود که بلور را از حالت ساختار شبکه­ای کامل خارج می­سازد. این نکته به ویژه در مورد Si که دارای نقطه­ی ذوب بالایی بوده و تمایل به چسبیدن به مواد ظرف ذوب را دارد، مشکلی جدی است. یک روش جایگزین، که این مشکل را برطرف می­کند، شامل کشیدن بلور از مذاب در هنگام رشد آن است. در این روش یک دانه­ی بلوری در داخل ماده­ی مذاب قرار داده شده و به آهستگی بالا کشیده می­شود و به بلور امکان رشد بر روی دانه را می­دهد. معمولا در هنگام رشد، یلور به آهستگی چرخانده می­شود تا علاوه بر هم­زدن ملایم مذاب، از هرگونه تغییرات دما( که منجر به انجماد غیر ممکن می­شود) متوسط گیری کند. این روش، که روش چوکرالسکی نامیده می­شود، به شکل گسترده­ای در رشد Si،  Ge و برخی از نیمه­هادی­های مرکب استفاده می­شود[3].

 

1-3-1-2-      سلول های خورشیدی کریستالی سیلیکونی

 

این سلول­ها را می­توان بسته به ساختار بلوری سیلیکون به دو دسته تقسیم نمود : سلول­های خورشیدی سیلیکونی تک-کریستال و سلول­های خورشیدی سیلیکونی چند­کریستال. در دسته­ی دوم از سیلیکون چند کریستال به عنوان نیمه­هادی فعّال استفاده می­شود. در دسته­ی اول به منظور دست­یابی به بازده بالاتر طیّ یک مرحله­ی اضافه، سیلیکون چندکریستال به تک کریستال تبدیل می­شود. این کار باعث افزایش هزینه­ی ساخت خواهد شد. از سوی دیگر، از آن جا که نیمه­هادی باید ابتدا به صورت مربّعی درآمده و سپس مورد استفاده قرار گیرد، دور ریز مواد در این دسته بیش از سلول­های چند کریستال است ( سیلیکون چند کریستال را می­توان در قالب­های مربعی رشد داد).

 

1-3-2-       نسل دوم سلول های خورشیدی (سلول های لایه نازک)

 

از آن جا که در سلول­های خورشیدی نسل اوّل هزینه­ی ساخت بسیار بالاست، باید راهی برای کاهش هزینه­ها یافت. برای این کار باید دید چه چیزی موجب بالا رفتن هزینه­ی بالای تولید در آن سلول­ها می­گردید. با یادآوری مطالب پیشین مشخّص می­شود که با کاهش مواد مورد استفاده و نیز کاهش کیفیت و خلوص ساختار بلوری می­توان هزینه­ها را، هر چند بازده هم کاهش یابد، کاهش داد.
در سلول­های خورشیدی لایه­نازک در واقع هم مواد مورد استفاده کاهش یافته است و هم فرآیند ساخت بسیار ارزان­تر شده است. علاوه بر این­ها نیمه­هادی­های لایه­نازک انعطاف هم دارند و این امر می­تواند کاربردهای جدیدتری نیز پیش روی آن­ها قرار دهد. در این سلول­ها برای کاهش بیشتر هزینه­ حتّی می­توان از نیمه­هادی­های بی­شکل نیز استفاده نمود.
در این فصل انواع مهم سلول­های خورشیدی لایه­نازک به صورت مختصر شرح داده شده­اند. لازم به ذکر است که معیار قرار گرفتن این سلول­ها در نسل دوم فقط لایه­نازک بودن نیمه­هادی در آن­هاست؛ در حالی که برخی از این سلول­ها می­توانند در سلول­های نسل سوم نیز قرار بگیرند چرا که بازده آن­ها می­تواند از حدّ شاکلی- کوئیزر نیز فراتر باشد.
 


فرم در حال بارگذاری ...

« بررسی و انتخاب سیستم مناسب تصفیه آب تولید شده همراه نفتبررسی و گاه نگاری تپه جعفرآباد A و B و C »
 
مداحی های محرم