جریان خطا در ترانسفورماتور قدرت به سیمپیچها و ساختار مکانیکی متناظر با آن، استرس مکانیکی بسیار شدیدی را وارد میکند. این استرس منجر به تغییرات در سیمپیچها شده و خرابی بالقوه ترانسفورماتور را همراه خواهد داشت. این تغییرات بر مقادیر خازنی و اندوکتیو سیمپیچها تاثیر گذاشته و در نتیجه باعث تغییر در پاسخ فرکانسی ترانسفورماتور شده و از این رو براحتی قابل تشخیص خواهند بود.
تحلیل پاسخ فرکانسی ترانسفورماتور که از سال 1978 ارائه شده است، یک ابزار رایج تشخیص تغییرات سیمپیچهای ترانسفورماتور میباشد. تحلیل پاسخ فرکانسی با تزریق یک سیگنال بین ترمینالهای ترانسفورماتور و محاسبه دامنه و فاز پاسخ دریافتی در مقابل فرکانس، پیادهسازی خواهد شد[3]. بطورکلی این روش، یک تکنیک صنعتی برای افراد ماهر در زمینه خطایابی میباشد که پاسخ فرکانسی را با دادههای تاریخی ثبت شده یا با اطلاعات ترانسفورماتور مشابه(اصطلاحا ترانسفورماتور خواهر) از نظر ظاهری مورد مقایسه قرار دهند.
تغییر شکلهای جزیی در سیمپیچهای ترانسفورماتور هیچ اثر قابل توجهی بر مشخصات بهرهبرداری ایجاد نمیکنند، اما خواص مکانیکی مس ممکن است تغییر کند و همچنین مقاومت ضربه[8] بطور قابلتوجهی بهخاطر آسیب عایقی و کاهش فواصل، کاهش یابد. هرچند این تغییر شکلها بعد از یک دوره زمانی طولانی مدت از طریق تحلیل روغن یا رله بوخهلتز[9] قابل شناسایی خواهند بود.
این بدان معناست که روشهای تشخیصی پیشرفتهتری برای ترانسفورماتور با استفاده از پردازش سیگنال به منظور تشخیص خطای داخلی نیاز است. روشهای پردازش سیگنال برای بیرون کشیدن اطلاعات مفید از سیگنال مورد نظر مورد استفاده قرار میگیرد. در این روش، سیگنال میتواند بصورت شکل موج ولتاژ، جریان تونرال[10] یا ترکیبی از آنها باشد. به دلیل اینکه روشهای موجود برای ارزیابی شرایط داخلی ترانسفورماتور نمیتواند همه انواع خطاهای مختلف را نشان دهد، به روشهای هوشمندی نیاز است تا قادر به تشخیص خطا و نوع آن باشند. در مراجع مختلف روشهای متفاوتی برای نیل به این مطلب ارائه کردهاند.
1-3- بر مقالات
این قسمت به بر مقالاتی که در این زمینه تحقیق کرده و منتشر شده پرداخته است. در بععضی از این مقالات به مدلسازی ترانسفورماتور به منظور تعیین پاسخ فرکانسی ترانسفورماتور متمرکز شده و در بعضی دیگر مسئله تشخیص و طبقهبندی خطای ترانسفورماتور مورد بررسی قرار گرفته است.
- در مرجع [4] ، مدل شبکهای متوالی الکتریکی[11] برای سیمپیچ فشارقوی انتخاب شده و پاسخ فرکانسی آن محاسبه شده است. پاسخ فرکانسی به سه رنج پایین، میانی و بالا تقسیم شده و ظرفیت خازنی سری در رنج فرکانسی پایین و اندوکتانس در رنج فرکانسی بالا در نظر گرفته نشده است و حساسیت پاسخ فرکانسی به تغییرات پارامترها مورد بررسی قرار گرفته است.
- در مرجع [5] یک مدل دقیق از ترانسفورماتور تکفاز به منظور تشخیص خطای جابهجایی محوری[12] و تغییر شكل ارائه شده است. در مدل مزبور مقاومتهای موازی(تلفات دیالکتریک) و سری(تلفات مسی) بصورت وابسته به فرکانس در نظر گرفته شده است. البته اثر هسته و اندوکتانس مربوط به آن در فرکانسهای بالاتر از 10کیلوهرتز نادیده گرفته شده است. پارامترهای مداری از دو روش تحلیلی و المان محدود[13] محاسبه شده و حساسیت تستهای مختلف بر پاسخ فرکانسی مورد ارزیابی قرار گرفته است.
- در مراجع [6, 7] روش آزمایشگاهی برای تشخیص خطای اتصالکوتاه در ترانسفورماتور با استفاده از پاسخ فرکانسی ارائه شده است. اثر تجهزات اندازهگیری(گوپلینگهای سلفی و خازنی) بر روی پاسخ فرکانسی ترانسفورماتور مورد تحقیق قرار گرفته است.
- در مرجع [8] یک مدل دقیق از ترانسفورماتور سه فاز ارائه شده که شامل تلفات وابسته به فرکانس که ناشی از جریانهای جریان فوکو[14] در هسته و سیمپیچ است، ارائه شده است. به منظور تعیین پارامترها از تحلیل المان محدود دوبعدی استفاده شدهاست. یکی از مشاهدات مهم در این مرجع، قابل توجه بودن اثر هسته و اندوکتانس تا فرکانس یک مگاهرتز میباشد.
- در مراجع[10-12] یک مدل جامع و کامل از ترانسفورماتور سه فاز ارائه شده است که تمام اثرات وابسته به فرکانس هسته، سیمپیچها و سیستم عایقی لحاظ شده است. این مدل تا فرکانس یک مگاهرتز معتبر میباشد.
- در مراجع [13-17] از شبکه عصبی[15] برای تشخیص خطا در درون ترانسفورماتور استفاده شده است. اطلاعات مورد استفاده در شبکه عصبی از تحلیل گازهای محلول استفاده شده است. گازهای مهم و کلیدی منتشر شده از روغن به عنوان ورودی شبکه عصبی انتخاب شده است. همچنین در مراجع[18, 19] از ترکیب الگوریتم بردار پشتیبان ماشین[16] و تحلیل گازهای محلول برای خطایابی خطا استفاده شده است.
- در مرجع [20] با استفاده از ترانسفورماتور سهفاز و با تستهای آزمایشگاهی پاسخ فرکانسی برای اتصال کوتاه بین دورها و بین فازها و سیمپیچها اندازهگیری شده است و با استفاده از معیارهای آماری مانند ضریبهمبستگی[17]، مجموع مربعات خطا[18] و مجموع قدرمطلق لگاریتمی خطا[19] به منظور استفاده در روش تحلیل تجزیه فرکانسی بهره برده شده است.
- در مرجع [21] به منظور تشخیص خطای تغییر شكل سیمپیچها از شبکه عصبی و پاسخ فرکانسی بهره برده است. پاسخ فرکانسی در شرایط آزمایشگاهی اندازهگیری شده و از دو معیار انحراف معیار[20] و ضریب همبستگی به عنوان ورودی شبکه عصبی اتخاذ شده است.
- درمرجع [22] از روش ER[21] که مبتنی بر اطلاعات پاسخ فرکانسی است، به منظور ارزیابی شرایط سیمپیچ ترانسفورماتور قدرت بهره برده است. خطای اتصالکوتاه، تغییر شکل و جابهجاییمحوری شبیه سازی شده و با این اطلاعات الگوریتم مورد نظر تشکیل میگردد.
- در مرجع [23] مدل الکتریکی برای ترانسفورماتور تکفاز به کار گرفته شده و با استفاده از توابع تبدیل مختلف نمودارهای پاسخ فرکانسی شبیهسازی اندازهگیری شده است. خطای تغییر شکل و جابهجاییمحوری مورد مطالعه قرار گرفته و حساسیت توابع تبدیل مختلف در تشخیص به این دو نوع خطا ارزیابی شده است.
[1] – Power Transformer
[2] – Deformation
[3] -Frequency Rwsponse Analyse
[4] -Dissolve Gas Analyse
[5] -Signal Processing
[6] – Leakage Flux
[7] -Negative Current Sequence
[8] -Impulse Resistance
[9] – Bocholtz Relay
[10] Neutral Current
[11] -Laddder Network Model
[12] – Axial Displacement
[13] -Finit Element Methode
[14] – Eddy Current
[15] -Neural network
[16] – Support Vector Machine
[17] – correlation coefficient
[18] -Sum Square Error
[19] -Absolute Sum Logarithmic Error
[20] – Standard Deviation
[21] – Evidental Reasoning
***ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است***
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است
فرم در حال بارگذاری ...