وبلاگ

توضیح وبلاگ من

نقش صنایع‌دستی در توسعه، اشتغال و اقتصاد استان گیلان

صنایع‌دستی تبلور عینی فرهنگ و مظاهر هنری و از نوع هنرهای كاربردی و مردمی به حساب می‌آید و از آنجا كه هر فراورده دستی بازگوكننده خصوصیات تاریخی، اجتماعی و فرهنگی محل تولید خود است، می‌تواند عامل مهمی در شناساندن فرهنگ و تمدن وهمچنین عاملی برای جذب گردشگران داخلی و خارجی محسوب شود (یزدان‌پناه، لیلا، صمدیان، فاطمه؛ عوامل مؤثر بر میزان موفقیت شرکتهای تعاونی، 1388). در جامعه‌ای سنتی صنایع‏دستی دارای ارزش‏های‏ استفاده و کاربردی هستند، یعنی مردم این صنایع را به دلیل فایده‏های‏ عملی و نیازهای اجتماعی، اقتصادی و فرهنگی به‌کار می‏برند. اما در جامعه‏ی مدرن، این صنایع بیشتر دارای ارزش نمادین است (رضوانفر، مرتضی، صنایع‏دستی و مدرنیته‏ تحلیلی مردم‏شناختی از ابعاد نظری صنایع‌‏دستی، 1385). صنایع‌دستی بیشتر به عنوان اقلامی كه با دست و اغلب با استفاده از ابزار ساده ساخته می‌شوند و به‌طور کلی ماهیتی هنری و یا سنتی دارند تعریف می‌شود. یکی از ویژگیهای مشترک که در اکثر صنایع‌دستی یافت می‌شود این است که روش تولید آنها کاربر، با استفاده از ابزار و تجهیزات ساده می‌باشد و بسیار متفاوت از روش تولید به‌وسیله پیشینیان نیست (رد زان، معروف، عارف، فریبرز، محدودیتها و پتانسیل صنعت صنایع‌دستی در مناطق توسعه‌نیافته مالزی،2011). در تعریفی دیگر، صنایع‌دستی به گروهی از صنایع اطلاق می‌شود که تمام یا قسمت اعظم مراحل ساخت فراورده‌های آن با دست انجام می‌گیرد. در گذشته صنایع‌دستی بسیاری در گیلان رواج داشت که امروزه به دلیل زندگی ماشینی و فناوری رونق خود را از دست داده است (قربانی ریک، رضا؛ غلامی، سارا، ۱۳۸۷). اغلب محصولات صنایع‌دستی از فناوریهای ساده و مواد خام محلی در دسترس استفاده می‌كند. تولید صنایع‌دستی به مقدار کمی سرمایه‌گذاری در مقایسه با محصولات صنعتی نیاز دارد و تولید کننده جدید با موانع ورود كمتری مواجه است. به هرحال، تولید صنایع‌دستی می‌تواند در خانه یا در مراکز منطقه‌ای واقع شده در مناطق روستایی انجام شود و افراد برای كار كردن نیازی به نقل مكان به مناطق بزرگتر شهری ندارند (دی گورمن، ویلیام و همكاران، شركت نساجی صنایع‌دستی اردن بدوی: بررسی امكان‌سنجی شغل برای زنان اردنی، 2009). برای تولید صنایع‌دستی، بیشتر از منابع داخلی استفاده می‌شود، كه می‌توان نیروی كار، مواد اولیه و ابزاركار را به‌عنوان منابع نام برد كه نزدیك به80 درصد این تولید را فراهم می‌كنند. در مجموع می‌توان گفت كه تولید این صنایع، اثر مستقیم بر درآمد ناخالص ملی دارد و هرگونه افزایش در میزان تولید و بهبود كیفیت، تأثیر مستقیمی بر افزایش درآمد ناخالص ملی می‌گذارد. مواد اولیه‌ای مانند پشم، كرك و دیگر مواد، درصورت تبدیل به صنایع فرش، گلیم، جاجیم، گبه و غیره، ارزش چند برابری پیدا می‌كند، كه این ارزش در صورت صدور نیز چند برابر می‌شود (نواب اكبر، فیروزه و همكاران، عوامل مؤثر بر كمیت و كیفیت تولید صنایع دستی،1379). بخش صنایع‌دستی می‌تواند تأثیر عمده‌ای بر اقتصاد ملی از طریق كسب درآمد ارز خارجی، ایجاد اشتغال و رشد اقتصادی پایدار داشته باشد. پول صرف شده در صنایع دستی فوراً و بدون کاهش ارزش، به سوی جامعه محلی گسترش می‌یابد. صنایع‌دستی فرصتی برای جایگزینی واردات از کشورهای دیگر است که به بازار روانه می‌شوند اما نماینده فرهنگ محلی نیستند و به گسترش اقتصاد کمک نمی‌كنند (دیوید اوكونور، صنایع‌دستی و ارتباط آن با گردشگری: صنعتگران گنجینه شما هستند، 2006). همچنین صنایع‌دستی بخش جدایی‌ناپذیری از تجارب توریستها را تشكیل می‌دهد. بسیاری از كشورها از صنایع‌دستی به‌عنوان بخشی از توریسم فرهنگی حاكم در كنار مكانهای باستانی و میراث فرهنگی بهره می‌برند، زیرا آنها برای جوامع منابع درآمدی و فرصتهای شغلی فراهم می‌كنند (مصطفی، مایرنا، پتانسیل تقویت صنایع‌دستی به‌عنوان یك محصول گردشگری در اردن،2011). ایران، به عنوان كشوری در حال توسعه از نظر فناوری و یكی از سه قطب مهم صنایع‌دستی جهان، می‌تواند با بهره‌گیری از ظرفیتهای موجود و مطالعات و تجربیات داخلی و جهانی، در كنار صنایع ماشینی با توسعه صنایع‌دستی و روستایی خویش به توسعه اقتصادی قابل انتظار دست یابد (یزدان پناه، لیلا، صمدیان، فاطمه؛ عوامل مؤثر بر میزان موفقیت شرکتهای تعاونی، 1388). استان گیلان با بیش از 60 رشته صنایع‌دستی، دارای تنوع تولید و محصولات قابل عرضه به بازارهای داخلی و خارجی است. فهرست رشته‌های دارای قدمت و اصالت تاریخی و فرهنگی صنایع‌دستی استان عبارتند از: گلیم بافی، نازك كاری و خراطی چوب، تولیدات دست بافت، قالیبافی، تولید تابلوهای معرق، چموش دوزی، سفالگری و سرامیك سازی، قلاب دوزی، مرواریدبافی، تولید عروسكهای كاموائی، بامبوبافی، چهل‌تكه‌دوزی، چادرشب بافی، حصیربافی، شال بافی، نمدمالی، رشتی‌دوزی، کدوی قلیانی و منبت. در حالی‌كه در جهان امروز صنایع‌دستی، علاوه بر حفظ جایگاه خود در عرصه هنر، زیبایی‌شناختی و هویت بخشی ملی و منطقه‌ای، به منبع مهم ارزش افزوده و بهره‌وری اقتصادی تبدیل شده است، در ایران، به دلیل برخی موانع و مشكلات، این صنعت از جایگاه واقعی خود فاصله گرفته و از نقش آفرینی در عرصه اقتصادی نیز دور شده است. این عامل سبب شده كه تأثیر و نقش صنایع‌دستی در افزایش اشتغال و درآمدزایی به مرور كم‌رنگ شود، طوری‌كه، از سویی، امكان عرضه در بازارهای داخلی را از دست می‌دهد و، از سوی دیگر، رؤیای رقابت با بازارهای خارجی را ناممكن می‌سازد (پارسایی، الهام، نگاهی به چالش‌های پیش‌روی توسعه صنایع‌دستی، 1386). این مقاله به بررسی جنبه‌های اقتصادی صنایع‌دستی استان گیلان و تأثیر آن در رشد و توسعه اقتصادی این استان می‌پردازد.

 تصویر درباره جامعه شناسی و علوم اجتماعی

 

 

مواد و روشها

 

درباره تأثیر صنایع‌دستی بر رشد و توسعه استان گیلان تاكنون تحقیقی صورت نگرفته است، اما در خصوص صنایع‌دستی تحقیقات زیادی صورت گرفته، از جمله فیروزه نواب اكبر، نوذر منفرد و علیرضا رضائی در تحقیقی تحت عنوان عوامل مؤثر بر كمیت و كیفیت تولید صنایع‌دستی بین زنان عشایر در سال 1379 نشان دادند تولید صنایع‌دستی بر میزان درآمد ناخالص سالانه خانوار، هزینه‌ها و ارزش افزوده تأثیر معناداری دارد. فرهود گلمحمدی در پژوهشی، تحت عنوان توسعه صنایع‌دستی و فناوری متوسط با هدف گسترش توریسم و اشتغال پایدار روستایی، در سال 1389 نشان داد كه برای دستیابی به اشتغال و توسعه پایدار در روستاها ظرفیت بخش كشاورزی محدود است و باید به دنبال گزینه‌های دیگری برای ایجاد كار و درآمد برای روستائیان بود. ایجاد و گسترش صنایع‌دستی و فناوری متوسط و توسعه توریسم می‌تواند سهم مهمی حتی بالاتر از سهم كنونی بخش كشاورزی در ایجاد كار و درآمد برای روستائیان داشته باشد.

 

در این تحقیق درپی بررسی تحلیل اقتصادی صنایع‌دستی استان گیلان و تأثیر آن در رشد و توسعه این استان هستیم. جهت گردآوری اطلاعات،آمار و سوابق و یافته‌های پژوهشی در زمینه موضوع تحقیق از كتابخانه‌ها و مراكز اطلاع‌رسانی و اسناد، سالنامه‌های آماری استان گیلان، مقالات، ارتباطات اداری سازمانی، استعلام از سازمان میراث فرهنگی، صنایع‌دستی و گردشگری استان گیلان و استفاده از سایتهای اینترنتی و كتابخانه‌های دیجیتالی و بررسی مصاحبه‌ها و نظرات دست‌اندركاران و مسئولان ذیربط و نظرات صنعتگران شاغل در این بخش استفاده شده است. روش تحقیق توصیفی، کمّی و كاربردی است و در نهایت ارائه راهكارها و الگوهای كاركردی در موضوع تحقیق، از روشها و اهداف اصلی تحقیق است.

 تصویر درباره گردشگری

در این پژوهش همچنین تأثیر صنایع‌دستی بر بخشهایی چون گردشگری، درآمد سرانه، تولید ملی، توسعه صادرات و اشتغال استان بررسی می‌گردد. مشكلات و موانع توسعه صنایع‌دستی استان گیلان مورد بررسی قرار می‌گیرد و در ادامه راهكارها و پیشنهادهایی برای توسعه و ارتقاء جایگاه و تقویت بازار صنایع‌دستی استان گیلان ارائه می‌گردد. اطلاعات مورد نیاز این تحقیق كه جمع‌آوری شده و مورد بررسی و تجزیه و تحلیل قرار گرفته اند، شامل موارد زیرند:

 

– تعداد افراد شاغل در بخش صنایع‌دستی به تفكیك شاخه‌های صنایع‌دستی استان گیلان در سال 1390.

 

– تعداد صنعتگران شناسایی شده در بخش صنایع‌دستی استان گیلان بین سالهای 1384 تا1390.

 

– نسبت شاغلان بخش صنایع‌دستی به كل شاغلان استان گیلان طی سالهای 1384 تا 1390.

 

– میزان فروش صنایع‌دستی استان گیلان بین سالهای 1388 تا 1390.

 

– آمار صادرات گمركات استان گیلان بین سالهای 1385 تا 1387.

 

محدوده جغرافیایی (مکانی) تحقیق حاضر، كلیه مناطق شهری و روستایی استان گیلان را شامل می‌شود و جامعه آماری تحقیق نیز كلیه صنعتگران شاغل در بخش صنایع‌دستی استان گیلان می‌باشد، محدوده زمانی پژوهش نیز بین سالهای 1384 تا 1390 در نظر گرفته شده است و فرض تحقیق براین است که رشد صنایع‌دستی در استان گیلان از جنبه‌های مختلف سبب توسعه اقتصادی استان می‌گردد.

عکس مرتبط با اقتصاد

 

 

 

تجزیه و تحلیل

 

در بخش اقتصاد، هدفهای اصلی دولت، افزایش تولید و درآمد ملی، رشد اقتصادی، رسیدن به اشتغال کامل و کاهش نرخ بیکاری، ثبات قیمتها، توسعه صادرات و افزایش درآمدهای ارزی است. کشورهای در حال توسعه در اجرای برنامه‌های مورد نظر خود با مشکلات زیادی

دانلود مقالات

 همانند رشد بی‌رویه جمعیت، وجود انواع مختلف بیکاری و در نتیجه پایین بودن سطح درآمد گروه زیادی از مردم، كمبود سرمایه داخلی و نبود منابع مالی کافی برای اجرای برنامه‌های توسعه اقتصادی جهت فراهم آوردن امکان بهره‌برداری بهینه از منابع انسانی، طبیعی و… کشور روبرو هستند. با توجه به کاهش منابع درآمد ملی، که اساساً متکی به درآمد حاصل از صدور نفت بوده، و شدت یافتن آهنگ رشد جمعیت که تعداد متقاضیان در بازار کار را هر ساله به طور روز افزونی افزایش می‌دهد، در حال حاضر اولویتها ایجاب می‌کند، صرف‌نظر از طرحهای زیربنایی و اساسی کشور، در زمینه تولید روی طرحها و پروژه‌های کاربر یا کارطلب بیشتر تکیه داشته باشیم تا طرحهایی که عمدتاً سرمایه‌بر و به‌ویژه ارزبر می‌باشند. در این راستا صنایع‌دستی با توجه به ویژگیهایی که دارد شاید بیش از هر فعالیت تولیدی دیگری با شرایط موجود مطابقت داشته باشد و از این‌رو می‌توان نقش شایسته‌تری در برنامه‌ریزی آینده کشور برای آن در نظر گرفت که از آن جمله افزایش سهم تولید ناخالص ملی خواهد بود (بختیاری، حمید، تحلیلی بر ماهیت صنایع‌دستی و جایگاه آن در نظام برنامه‌ریزی). مهمترین ویژگیهای صنایع‌دستی عبارتند از: کاربر بودن و ارزش افزوده بسیار بالا، نیاز به سرمایه اندک برای ایجاد و بهره‌برداری، تأمین قسمت عمده‌ی مواد اولیه مصرفی از منابع داخلی، عدم نیاز به كارشناس و متخصص خارجی و سازگاری و استفاده از مهارتهای بومی، عدم آثار مخرب زیست‌محیطی، قدرت اشتغالزایی با سرمایه اندك، برخورداری از ابزار كار ساده، بازار ساده فروش محصولات، قابلیت و توانایی ایجاد درآمد مکمل، بالا رفتن درآمد كشور از طریق جذب گردشگر و ارتقای صنعت توریسم. صنایع‌دستی بخشی از صنعت فرهنگی و دارای ظرفیت ایجاد ارزش افزوده بالا برای یک كشور است که از نزدیک با بخشهای مختلف صنعتی مرتبط شده است. کشورها در حال اعمال تلاشهای سازگار برای توسعه صنایع‌دستی خود به سوی صنایعی با ارزش افزوده اقتصادی و صنایع منحصر به‌فرد به لحاظ فرهنگی می‌باشند (یانگ هون آهن، صنایع‌دستی كره و صنعت گردشگری، 2006). صنایع‌دستی از جنبه‌های مختلفی سبب رشد اقتصادی یك كشور می‌شود، كه از جمله می‌توان به موارد ذیل اشاره كرد:

 

 

 

صنایع‌دستی بهترین راه اشتغالزایی

 

با توجه به بالابودن هزینه اشتغال در بخشهای دیگر اقتصادی، توسعه و سرمایه‌گذاری روی صنایع‌دستی یكی از راههای كم هزینه و مناسب برای ایجاد اشتغال می‌باشد. با توجه به اهمیت این نكته كه، برای ایجاد اشتغال و رفع بیكاری باید آن‌را در بخشهای روستایی، شهری و استانی با توجه به مزیتهای نسبی و فرهنگ بومی هر منطقه جستجو كرد، صنایع‌دستی با قابلیتها و خصوصیات ویژه خود، از جمله استفاده از مواد اولیه داخلی، ارزان و فناوری ساده و عدم نیاز به سرمایه‌گذاری زیاد و امکان ایجاد و توسعه در مناطق روستایی، به‌ویژه در داخل محل سکونت روستاییان، می‌تواند نقش مهمی در مبارزه با انواع بیکاری داشته باشد و مهمترین منبع کار، به خصوص برای روستاییان و زنان روستایی، محسوب گردد. صنایع‌دستی جنبه‌های زیادی به عنوان محرک اقتصادی دارد. صنایع‌دستی با اشتغال در خارج از فصل برای اعضای جوامع کشاورزی این امكان را فراهم می‌كند تا درآمد خود را تكمیل كنند. مهمتر این‌كه، این صنایع اشتغال و فرصتهای درآمدی مورد نیاز زیادی را برای افرادی که به‌طور سنتی از اقتصاد محلی محرومند، مانند زنان، اعضای اقلیتهای قومی، جوانان، کارگران غیر ماهر، افراد معلول و سالمند، فراهم می‌كنند (مك كرچر، باب، گردشگری بعنوان یك كاتالیزور، 2006). توسعه بخش صنایع‌دستی همچنین می‌تواند به کاهش مهاجرت روستاییان به شهرها کمک کند که بسیاری از کشورها را با ازدحام بیش از حد در شهرها و ناتوانی برای ایجاد فرصتهای شغلی و افت ناشی از آن برای اقتصاد روستایی، به ستوه آورده است (اوكونور، دیوید، صنایع‌دستی و ارتباط آن با گردشگری، 2006).

 

 

 

جدول 1 : تعداد افراد شاغل در بخش صنایع دستی در سال 1390به تفكیك شاخه‌های صنایع دستی استان گیلان

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

رشته تعداد افراد مشغول بكار نسبت شاغلان این رشته به كل شاغلان بخش صنایع دستی        (به درصد)
گلیم بافی 3200 83/27
حصیربافی 2000 39/17
بافتنی های سنتی 800 96/6
چادر شب بافی 600 22/5
قلاب بافی 350 04/3
مروارید بافی 220 91/1
قلاب دوزی 120 04/1
معرق چوب 100 87/0
سفال و سرامیك 100 87/0
منبت 70 61/0
خراطی 70 61/0
نازك كاری 50 43/0
بامبو بافی 50 43/0
سایر رشته ها 3770 78/32

 

     منبع :اداره كل میراث فرهنگی استان گیلان

 

جدول شماره1 تعداد افراد مشغول بكار در شاخه‌های مختلف صنایع‌دستی استان را به ترتیب از بیشترین افراد شاغل در یك رشته تا كمترین آنها نمایش می‌دهد. این جدول همچنین نسبت فعالان هر یك از شاخه‌ها به كل شاغلان حوزه صنایع‌دستی استان را در سال1390 نشان می‌دهد. بیشترین نسبت شاغلان مربوط به گلیم‌بافی است و حصیربافی و بافتنیهای سنتی در مراتب بعدی قرار دارند. منظور از سایر رشته‌ها، آنهایی هستند كه افراد شاغل در آنها بسیار كمتر از50 نفر می‌باشند.

 

جدول 2 :تعداد صنعتگران شناسایی شده در بخش صنایع دستی استان گیلان بین سالهای 1384 تا 1390،

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

سال تعداد صنعتگران شناسایی شده نرخ رشد به درصد
1384 700 ——
1385 1200 43/71
1386 350 83/70-
1387 700 100
1388 1300 71/85
1389 1500 38/15
1390 5700 280

 

                منبع :اداره كل میراث فرهنگی استان گیلان

 

همان‌طوری‌كه ملاحظه می‌شود، جدول شماره2 تعداد صنعتگران شناسایی شده در بخش صنایع‌دستی استان گیلان كه دارای كارت شناسایی شده‌اند را بین سالهای1384 تا1390 به‌همراه نرخ رشد در هر سال نشان می‌دهد، كه از700 نفر در سال 1384 به 5700 نفر در سال1390 رسیده است كه رشدی معادل 29/714 درصدی (14/8 برابری) را نشان می‌دهد.

 

در سی سال گذشته، بیكاری و اشتغال مهمترین دغدغه استان گیلان بوده است. محدود ماندن نرخ رشد بخشهای مختلف اقتصادی، نرخ پایین انباشت سرمایه، پیدایش فناوریهای جدید، كاهش تقاضا برای نیروی كار در بخش اقتصاد و مازاد نیروی كار و جایگزینی سرمایه به جای نیروی كار به خاطر پایین بودن هزینه سرمایه نسبت به هزینه نیروی كار، موجب افزایش فشار بیكاری در استان گیلان شده است. این در حالی است كه جذب نیروی کار توسط بخش صنایع‌دستی، علاوه بر تعادل بخشیدن به سایر بخشها، از ایجاد شغلهای کاذب نیز جلوگیری می‌كند و به دلیل ماهیت تولیدی بودن تأثیرقابل توجهی بر اشتغالزایی غیرمستقیم دارد. براساس اعلام سازمان میراث فرهنگی، صنایع‌دستی و گردشگری استان گیلان، تولید صنایع‌دستی در گیلان برای10هزار نفر به صورت مستقیم شغل ایجاد کرده است. (روزنامه ایران، ص15، 30 خرداد 1389).

 

 

بررسی رفتار خستگی کامپوزیت‏ زمینه پلیمری تقویت شده با الیاف شیشه ساخته شده

1-1- کلیات

 

افزایش تأثیرات منفی انرژی فسیلی بر روی محیط زیست، مانند گرم شدن جهانی و بحران در دسترس بودن انرژی، بسیاری از کشورها را بر آن داشته است که از انرژی­های جایگزین دیگری مانند انرژی خورشید، باد و خورشید-هیدروژن استفاده کنند. این انرژی­ها تجدیدپذیر و دوست­دار محیط زیست هستند، به گونه‏ای که پاسخ­گوی تقاضای روزافزون بشر برای انرژی می­باشند. انرژی باد، سریع­ترین منبع انرژی رو به رشد در جهان، یک منبع انرژی تجدیدپذیر و تمیز است. اکنون کشورهای بسیاری، به خصوص در اروپا، ایالات متحده آمریکا، چین و ملل دیگر، توجه خاصی به این منبع انرژی دارند ]1[.

عکس مرتبط با محیط زیست

بر اساس اطلاعات سازمان انرژی­های نو ایران (سانا)،استفاده از انرژی باد در طول سالیان اخیر بیشترین رشد را در مقایسه با سایر انرژی­های نو تجربه کرده است و توربین­های بادی هر روز بهینه­تر و با ظرفیت توان بیشتر به بازار عرضه می­شوند. تاریخچه انرژی بادی یک سیر تکاملی را به استفاده از قطعات سبک و ساده برای به حرکت درآوردن پره­ها بوسیله نیروی بازدارنده[1] طی کرده است. آسیاب­های بادی که در قدیم مورد استفاده قرار می­گرفتند نخستین نوع توربین­های بادی بودند که به عقیده تمامی کارشناسان نخستین بار توسط ایرانیان به کار گرفته شد ]2[.

 

با وجود این پیشینه ارزشمند تاریخی و علی‌رغم پتانسیل­های موجود و مناطق مستعد بادخیز کشور، توسعه صنعت باد در ایران با پیشرفت مناسبی روبرو نشده است. در حال حاضر در وزارت نیرو، نصب MW5000 نیروگاه تجدیدپذیر در قانون برنامه پنجم توسعه هدف­گذاری شده است که از این میزان MW4500 آن برای توسعه باد در نظر گرفته شده است و می‌توان گفت در پنج سال آینده قریب به MW4000 بازار برای توسعه بخش خصوصی وجود خواهد داشت. هم اکنون سایت­های بادی بینالود و منجیل، بزرگ­ترین سایت­های بادی کشور محسوب شده که تقریبا MW100 از برق مورد نیاز کشور را تامین می­کنند، این مقدار سهم ناچیزی از مقدار کل انرژی برق تولید شده در کشور را تشکیل می­دهد ]2[.

 

اما بر خلاف رویه موجود در داخل کشور، سایر کشورهای جهان به طور گسترده در راستای توسعه صنعت بادی خود گام برداشته­اند و میزان انرژی الکتریکی تولید شده بوسیله باد روز به روز سهم بیشتری از کل انرژی تولیدی جهان را تشکیل می­دهد. به عنوان نمونه­ای از سیاست­گذاری­های کلان در این زمینه می­توان به تصمیم اتحادیه اروپا برای تولید 20% از انرژی خود از منابع پاک تا سال 2020 اشاره کرد. شکل 1-1 ظرفیت کلی انرژی بادی تولیدی در جهان را تا سال 2011 را نشان می­دهد ]2[.

 

جدول1-1 نیز میزان ظرفیت نیروگاه­های بادی نصب شده در کشورهای شاخص استفاده کننده از انرژی باد را نشان می­دهد.

 

اغلب پره­های توربین، چه کوچک و چه بزرگ، قسمت­های اصلی مشابهی دارند: پره­ها، شفت­ها، چرخ­دنده­ها، ژنراتور، و یک کابل (برخی از توربین­ها ممکن است دارای جعبه دنده نباشند). کلیه این قسمت­ها با هم کار می­کنند تا انرژی باد را به الکتریسیته تبدیل نمایند. در این بین، پره یکی از مهمترین اجزای توربین­های بادی است که وظیفه آن تولید نیروی لازم برای چرخاندن محور اصلی توربین است. طراحی پره توربین­های بادی یکی از مهم­ترین و اصلی­ترین بخش­های طراحی توربین به شمار می­شود که با توجه به شرایط بسیار متغیر بهره­برداری و اعمال بارهای شدید بر آن، انتخاب جنس و طراحی سازه­ای آن از اهمیت زیادی برخوردار است. مواد مورد استفاده در ساخت پره­ها به طور قابل ملاحظه­ای بر روی کارایی و خواص آن­ها، مانند وزن پره، مکانیزم آسیب، و عمر خستگی اثرگذار است. پره­های توربین­های بادی از مواد ناهمسان­گرد ساخته می‏شوند که معمولاً از کامپوزیت­های زمینه پلیمری، در ترکیبی از یک تک پوسته و کامپوزیت ساندویچی تهیه شده‏اند. طراحی­های امروزی عمدتاً بر اساس کامپوزیت­های تقویت شده با الیاف شیشه[1] (GFRP) صورت می‏گیرد. به طور کلی مواد مورد استفاده در ساخت پره­های توربین بادی بایستی تحمل بارگذاری­های خستگی شدید را در شرایط کاری داشته باشند ]1[.

 

ساختار کامپوزیتی به عنوان یک نوع خاص از کامپوزیت­های لایه­ای  تلقی می­شود و مقبولیت گسترده­ای به عنوان یک ساختار عالی برای دست­یابی به اجزایی با وزن کم و ساختارهایی با سفتی خمشی[2] بسیار بالا، استحکام زیاد، و مقاومت کمانشی بسیار زیاد به دست آورده است.

دانلود مقالات

 این مواد توسط روش قالب­گیری انتقال رزین[3] (RTM)، RTM به کمک خلاء[4]، لایه­گذاری دستی و تزریق رزین به کمک خلاء[5] (VIP) ساخته می‏شوند. تفاوت روش VIP با روش RTM در آن است که در این روش تنها یک سمت از قالب جامد است در صورتی که در روش RTM هر دو سمت جامد هستند. علاوه بر آن، از یک خلأ اعمالی به منظور نیرو محرکه برای انتقال رزین به تقویت­کننده استفاده می­شود ]3[.

 

در تولید پره‌های توربین بادی کوچک و متوسط معمولاً از روش لایه‌گذاری دستی و در پره بزرگ و حتی متوسط با توجه به اهمیت وزن و استحکام سازه از روش تزریق رزین به کمک خلأ (VIP) استفاده می‌شود. یکی از موضوعاتی که باید در طراحی محصولات مهندسی مورد استفاده قرار گیرد آن است که عمر محصول تولیدی چقدر خواهد بود. عمر در این محصولات به صورت مدت زمانی تعریف می­شود که محصول قادر است تحت بارهای سرویس عمل­کرد مورد انتظار را داشته باشد. عمر یک قطعه می­تواند به کوتاهی یک بار استفاده تعیین شود، از سوی دیگر در برخی محصولات باید قابلیت تحمل میلیون­ها سیکل در نظر گرفته شود که توربین­های بادی نیز از این دسته­اند. محصولاتی با چنین عمرهای بالایی مستعد برای شکست خستگی هستند.

 

گسترش ابزارهای مورد نیاز جهت تعیین عمر خستگی مواد ساخته شده از کامپوزیت با کندی روبروست، دلیل این امر را باید در ماهیت لایه­ای و غیریکنواخت این مواد جست و جو کرد، به طور مثال اگر در فلزات تنها عامل خرابی را طول ترک تشکیل می­دهد، مواد کامپوزیتی حالت‌های مختلف شکست را از خود بروز می­دهند که از آن جمله می­توان به ترک خوردن زمینه[6]، جدایش الیاف از زمینه[7]، کمانش الیاف، جدایش لایه­ها[8]، شکست تک­لایه و شکست الیاف اشاره کرد. معمولاً در یک شکست ناشی از خستگی در مواد کامپوزیتی ترکیبی از مکانیزم­های فوق فعال است و این مسأله به خودی خود تحلیل­های خستگی را با چالش­های فراوانی روبرو می­کند. حال اولین قدم در تحلیل­های خستگی تعیین منحنی S-N به صورت آزمایشگاهی و در قدم بعد شناسایی مکانیزم­های مختلف واماندگی خستگی می­باشد. با مشخص شدن این داده‌ها، مهندسین می‌توانند به تخمین‏های اولیه خستگی جهت ساخت محصول برای صنعت و خریداران کمک نمایند.

 

2-1- اجرای پروژه

 

در گام اول نیاز صنعت در ساخت پره‌های توربین بادی مورد بررسی قرار گرفت، از آنجا که آزمون‎های دینامیک با توجه به نوع سازه حائز اهمیت هستند طی جلسات برگزار شده در پژوهشکده هوا خورشید دانشگاه فردوسی مشهد موضوع بررسی رفتار خستگی کامپوزیت­های زمینه پلیمری (اپوکسی) تقویت شده با پارچه بافته شده با الیاف شیشه­ای E-glass، که در ساخت پره­های توربین بادی به کار می­روند، مطرح شد. در ادامه با مطالعه استانداردها و کارهای صورت گرفته بر روی خستگی کامپوزیت‌های زمینه پلیمری امکان‌پذیر بودن و قابلیت اجرای پروژه در دستور کار قرار گرفت. برای این کار لایه­گذاری نمونه­ها را به صورت ترکیبی از الیاف با جهات گوناگون در نظر گرفته شد که به نوعی شرایط به شرایط عمل­کرد واقعی پره­های توربین نزدیک‏تر شده باشد. در این مرحله نمونه سازی با استفاده از روش دستی و نیز تزریق به کمک خلأ در کارگاه کامپوزیت پژوهشکده هوا خورشید دانشگاه فردوسی مشهد، انجام گرفت. بعد از برش دادن ورق­های کامپوزیتی، به منظور ساخت نمونه، مقاطع برش خورده ماشین­کاری شده و در نهایت نمونه نهایی به دست آمد. پیش از شروع آزمون خستگی با تعریف آزمون‌های مورد نیاز و انجام آن‌ها از کالیبره بودن دستگاه مورد استفاده اطمینان حاصل شد. در مرحله بعد با انجام تست کشش و شروع تست خستگی مشکلات اولیه انجام تست از جمله شکستن نمونه در فک‌های دستگاه و مشکلات ساخت نمونه‌ مورد بازبینی قرار گرفت و طی جلساتی راهکارهای حل مشکلات مطرح شد.

 

در گام بعدی با توجه به تعداد نمونه‌های لازم جهت آزمون خستگی و کشش ابعاد صفحه اصلی مشخص و نمونه نهایی تولید شد. با انجام آزمون کشش بارهای اعمالی برای انجام آزمون خستگی تعیین و تست بر روی نمونه‌ها آغاز شد. بر روی نمونه‌های آماده شد به هر دو روش دستی و VIP،رزین و الیاف آنالیز حرارتی TGA صورت گرفت تا بتوان با نتایج به دست آمده از تصویر برداری SEM از سطوح شکست خستگی مکانیزم‌های غالب خستگی شناسایی شود.

 

3-1- هدف از انجام تحقیق

 

با توجه به اهمیت موضوع خستگی در پره­های کامپوزیتی توربین­های بادی، در این پژوهش، اثر بارگذاری خستگی در دو روش VIP و لایه­گذاری دستی مورد بررسی قرار گرفت. لازم به ذکر است که در هر کدام از روش­های مذکور جهت­گیری­های معینی از الیاف و پارچه شیشه­ای به کار گرفته شد تا بتوان تأثیر این پارامتر بر روی خواص خستگی و طول عمر پیش­بینی شده برای پره­ها را مورد تحقیق و بررسی قرار داد.

 

در فصل 2 به بررسی مواد مورد استفاده برای ساخت؛ شامل رزین اپوکسی، الیاف و پارچه­های E-glass و روش­های مختلف تولید و آزمون‌های صورت گرفته بر روی آن­ها پرداخته می­شود. در فصل 3 روش انجام آزمایش و نحوه آماده‌سازی نمونه‌ها برای آزمون کشش، آزمون خستگی تحت بارگذاری کشش-کشش، تصویربرداری SEM و آنالیز حرارتی TGA با دو روش ساخت، یعنی لایه­گذاری دستی و تزریق رزین به کمک خلأ (VIP) آورده شده است. درفصل 4 با استفاده از نتایج آزمون کشش و خستگی، منحنی S-N برای نمونه‏های ساخته شده به دو روش VIP و لایه­گذاری دستی رسم شد و تحلیل‌های لازم بر روی داده‌ها صورت گرفت. به کمک نتایج حاصل از تصویربرداری SEM و آنالیز حرارتی TGA، به ترتیب مکانیزم‌های واماندگی نمونه­های دستی و VIP تحت بارگذاری خستگی و درصد الیاف در نمونه­های ساخته شده به روش­های مذکور علاوه بر نوع اتصال بین الیاف تقویت کننده و زمینه تعیین شد. در انتها در فصل 5 نتیجه‌گیری و پیشنهاداتی به منظور ادامه پروژه ارائه شده است.

 

[1] Glass fiber reinforced plastic

 

[2] Bending stiffness

 

[3] Resin transfer molding

 

[4] Vacuum assisted RTM

 

[5] Vacuum infusion process

 

[6] Matrix Cracking

 

[7] Fiber Debonding

 

[8] Ply Delamination

 

[1] Drag

تاثیر عملیات سرد کردن زیر صفر بر ساختار میکروسکوپی و رفتار تریبولوژیکی فولاد 7147/1

در بسیاری از کاربرد‌‌‌‌های صنعتی نیاز به قطعاتی است که دارای سطحی سخت بوده و درعین‌حال از چقرمگی یا مقاومت به ضربه‌ی خوبی نیز برخوردار باشند. ازجمله مواردی که می‌‌توان در این رابطه به‌عنوان مثال به آن‌ها اشاره کرد عبارت‫اند از:میل‌لنگ، میل بادامک، چرخ‌دنده و قطعات مشابه. این قطعات باید سطحی بسیار سخت و مقاوم در برابر سایش داشته و همچنین بسیار چقرمه و مقاوم در برابر ضربه‌‌‌‌های وارده در حین کار باشند.

 

بسیاری از قطعات فولادی را می‌‌توان به نحوی عملیات حرارتی کرد که در پایان دارای مجموعه‌ای از خواص بالا باشند،‌یعنی درحالی‌که از مقاومت به سایش خوبی برخوردارند، دارای استحکام دینامیکی خوبی نیز باشند. این نوع عملیات حرارتی که اصطلاحا به سخت کردن سطحی موسوم‌اند، آخرین عملیاتی هستند که باید در مرحله­ی پایانی ساخت قطعه و پس‌ازانجام تمام مراحل مربوط به شکل‌دهی نظیر ماشین‌کاری انجام شود.

 

روش‌‌‌‌های مختلف عملیات حرارتی که به کمک آن‌ها می‌توان سطح قطعات را سخت کرد، عمدتاً به دو دسته تقسیم می‌شوند. دسته‌ی اول عملیاتی که منجر به تغییر در ترکیب شیمیایی سطح فولاد می‌‌شوند و به عملیات حرارتی­شیمیایی یا ترمو­شیمی موسوم‌اند، نظیر کربن‌دهی، نیتروژن­دهی و کربن نیتروژن­دهی. دسته‌ی دوم روش‌‌‌‌هایی که بدون تغییر ترکیب شیمیایی سطح و فقط به کمک عملیات حرارتی که در لایه‌ی سطحی متمرکز شده، انجام می­شوند و باعث سخت شدن سطح می‌گردند و به عملیات حرارتی موضعی موسوم‌اند، مانند سخت کردن شعله‌ای و سخت­کردن القایی. در آلیاژ‌‌‌‌های آهن–کربن و فولاد‌ها، مارتنزیت از سردکردن سریع آستنیت به وجود می‌آید. واژه­ی مارتنزیت که برای مدت‌‌‌‌ها فقط به ساختار سخت حاصل از سریع سرد کردن فولاد‌‌‌‌های کربنی اطلاق می­شود برای قدردانی از دانشمند معروف آلمانی به نام مارتنز است. در به­کار بردن واژه‌ی مارتنزیت، اخیراً به‌جای محصولات حاصل، تأکید بیش‌تر بر روی طبیعت دگرگونی گذاشته‌شده است. مارتنزیت فازی است که توسط یک دگرگونی مارتنزیتی ‌یا جابجایی گروهی اتم‌‌‌‌ها حاصل می‌‌شود، گرچه ممکن است فاز یادشده‌، ترکیب شیمیایی، ساختار بلوری و خواص کاملاً متفاوتی از مارتنزیت در فولاد‌‌‌‌ها داشته باشد. دمایی را که در‌یک آلیاژ دگرگونی آستنیت به مارتنزیت شروع می‌‌شود، دمای شروع تشکیل مارتنزیت نامیده و آن را با Ms نشان می‌‌دهند. در حقیقت، Ms نشان دهنده‌ی مقدار نیروی محرکه‌ی ترمودینامیکی لازم برای شروع دگرگونی برشی آستنیت به مارتنزیت است. با افزایش درصد کربن، دمای Ms به‌طور قابل توجهی کاهش می‌یابد. در حقیقت کربن موجود به‌صورت محلول جامد، استحکام یا مقاومت برشی آستنیت را افزایش می­دهد و بنابراین با افزایش کربن نیرومحرکه‌ی بیش‌تری جهت شروع لغزش برای تشکیل مارتنزیت لازم است. این نیروی محرکه‌ی بیش‌تر، با سرد کردن فولاد تا دمایی پایین‌تر و یا به‌عبارت‌دیگر تحت تبرید بیش‌تر(Ms کمتر) به دست می‌‌آید. دمای پایان تشکیل مارتنزیت (Mf)‌یا دمایی که دگرگونی آستنیت به مارتنزیت در‌یک آلیاژ داده‌شده خاتمه می‌یابد نیز تابعی از درصد کربن آلیاژ است.

 

آستنیت باقیمانده فازی نرم بوده و در دمای پایین ناپایدار است؛ به‌گونه‌ای که در دمای پایین و در حین کار به مارتنزیت ترد تبدیل می‌‌شود. تبدیل آستنیت به مارتنزیت تقریباً 4% انبساط حجمی ایجاد می‌‌کند که منجر به اعوجاج قطعات می‌‌شود. بنابراین از عملیات زیر صفر یا بازگشت چندتایی در دمایی نسبتاً بالا و یا مدت‌زمان طولانی برای کمینه کردن میزان آستنیت باقیمانده در فولاد‌‌‌‌ها استفاده می‌‌شود.

 

دو نوع عملیات زیر صفر وجود دارد: 1) زیر صفر سطحی که در محدوده دمایی 100- تا C°60- انجام می­شود. این عملیات منجر به کاهش آستنیت باقیمانده و افزایش مقاومت سایشی می‌‌شود. 2) زیر صفر عمیق که در دما‌‌‌‌های زیر C°125- انجام می­شود.

 

اثرات زیر صفر‌ عمیق عبارت‌اند از:

 

1- تبدیل آستنیت باقیمانده به مارتنزیت

 

2- کاهش تنش­های پسماند

 

3- تشکیل کاربیدهای بسیار ریز که در بین کاربیدهای درشت قرار می‌‌گیرند

 

پروژه دانشگاهی

 

 

4- تشکیل ابرهای نابجایی در فصل مشترک زمینه‌ی مارتنزیتی و کاربید‌‌‌‌ها در طول فرایند هم‌دما سازی و تشکیل کاربید

 

5- توزیع یکنواخت کاربید­ها ،کوچک شدن اندازه­ی کاربید­های ثانویه، افزایش میزان و چگالی آن‌ها

 

6- افزایش مقاومت سایش خراشان و سایش خستگی

 

7- افزایش استحکام کششی و پایداری

 

8- افزایش سختی

 

9- پایداری ابعادی ماده 

 

10- تولید ساختار مولکولی چگال تر

 

11- افزایش هدایت الکتریکی فلزات

 

12- افزایش مقاومت به خوردگی

 

پارامتر‌‌‌‌های زیر صفر عبارت‌اند از: نرخ سرمایش، دمای هم‌دما سازی، زمان هم‌دما سازی، نرخ گرمایش، دما و زمان بازگشت و دمای آستنیته کردن.

 

تحقیقات بسیاری بر روی فولاد‫هایی که درصد عناصر آلیاژی و یا کربن آن‫ها بالاست، صورت گرفته است. در این پژوهش‫ها با حصول ترکیب مناسبی از توزیع کاربید‫ها و کاهش یا حذف آستنیت باقیمانده خواص فولاد‫های مورد مطالعه را بهبود داده‫اند.

 

فولاد 7147/1، فولادی کربوره شونده (سمانته) بوده که در ساخت قطعاتی که ترکیبی از استحکام متوسط، چقرمگی و مقاومت سایشی بالا نیاز است، مورداستفاده قرار گرفته است و گاه برای تهیه­ی قطعات مورد مصرف صنایع خودرو‫سازی همچون چرخ‌دنده و میل‌لنگ کاربرد دارد. در فولاد­هایی که به منظور سختی کاری سطحی تحت عملیات کربوره­کردن قرار می­گیرند، با افزایش درصد کربن سطح، Ms کاهش و میزان آستنیت باقیمانده در اثر سریع سرد کردن در سطح افزایش خواهد یافت.

 

در این پژوهش عملیات زیر صفر عمیق به منظور بهبود خواص سایشی فولاد 7147/1 در زمان‫های مختلف انجام شده است؛ در فصل دوم تحقیقات صورت گرفته بر فولاد‫های مختلف، فصل سوم مواد و روش تحقیق، فصل چهارم نتایج و بحث و در نهایت در فصل پنجم، نتایج حاصل و پیشنهاداتی در راستای بررسی‫های بیشتر و کارآمد گردآوری شده است.

 

فصل دوم: مروری بر مطالب

 

1-2- معرفی و تاریخچه

 

فولاد آستنیتی آلیاژی از آهن و کربن همراه با عناصر دیگر در حالت محلول است که با عملیات نفوذی در محلول آستنیتی تجزیه و همگن‌سازی می‌‌شود. زمانی که فولاد حرارت داده می‌‌شود ساختار کریستالی آهن به مکعبی مرکز‫دار تغییر می‌یابد. استحاله‌ی آستنیت به مارتنزیت از دمایی که دمای آغاز مارتنزیت ‌یا Ms نامیده می‌‌شود، آغاز می‫شود. برای اغلب فولاد‌‌‌‌های خاص، استحاله هم‌دما بوده و همان‌طور که دما به دمای پایان مارتنزیت می‌‌رسد (Mf)، توسعه می‫یابد. مقداری آستنیت، آستنیت باقیمانده، همیشه پس از سخت سازی حضور دارد. مارتنزیت بیش‌تر و درصد کربن بیش‌تر، سختی فولاد را افزایش می‌‌دهد. میزان کربن، دمای آغاز و پایان استحاله‌ی مارتنزیت را تحت تأثیر قرار می‌‌دهد. Ms و Mf می‌‌تواند پایین‌تر از دمای اتاق باشد؛ فولاد به‌صورت جزئی به مارتنزیت تبدیل شده و بقیه‌ی ساختار را آستنیت باقیمانده تشکیل می‌‌دهد. این دو دما همچنین با افزایش اندازه دانه کاهش می‌یابد [1].

 

2-2- آستنیت باقیمانده

 

دمای شروع استحاله مارتنزیت (Ms) و دمای پایان این استحاله (Mf) در فولادها به درصد کربن و درصد عناصر آلیاژی بستگی دارد (شکل2-1). همان‌طور که از شکل 2-1 مشخص است، وقتی فولادی با درصد کربن بالای 65/0 %کوئنچ می‌شود، تغییر حالت آستنیت به مارتنزیت در دمای اتاق (oC20) پایان نمی‌یابد. درنتیجه مقداری از آستنیت باقی خواهد ماند که به آستنیت باقیمانده موسوم است [2]. در جدول 2-1 تأثیر 1% از عناصر آلیاژی بر دمای شروع استحاله مارتنزیتدر فولادهایی با 9/0-1% کربن آورده شده است. البته تأثیر عناصر آلیاژی بر دمای استحاله مارتنزیتی به درصد کربن در فولاد نیز بستگی دارد. در جدول 2-2 تأثیر 1% کروم بر دمای شروع استحاله مارتنزیتی در فولادهایی با درصدهای مختلف از کربن آورده شده است [3]. در شکل 2-2 منحنی استحاله مارتنزیت آورده شده است. همان‌طوری که مشخص است استحاله مارتنزیت درA˝r(M) ، که همان دمای  Msاست شروع می‌شود. اگر دما کاهش پیدا کند، استحاله پیشرفت کرده و مقدار مارتنزیت افزایش می‌یابد. اگر عملیات کوئنچ تا دمای محیط انجام شود، استحاله مارتنزیتی در دمای  oC 20 متوقف می‌گردد. سرد کردن فولاد تا دمای t˝ که همان دمای Mf است منجر به افزایش درصد مارتنزیت می‌شود ولی مقداری آستنیت باقیمانده در ساختار حضور دارد [2]. آستنیت باقیمانده که یک فاز نرم است باعث کاهش سختی فولاد پس از کوئنچ خواهد شد. اگر درصد آستنیت باقیمانده بالاتر از 10% باشد باعث کاهش فاحش سختی در نمونه می‌شود (شکل 2-3). هر چه درصد کربن بالاتر باشد، درصد آستنیت باقیمانده نیز بیش‌تر خواهد بود (شکل 2-4). اگر یک فولاد‌‌‌ هایپریوتکتویید از منطقه کاملاً آستنیتی در بالای Acm سرد شود، ساختار پس از سرد کردن از مارتنزیت و آستنیتت باقیمانده تشکیل خواهد شد و همان‌طور که در شکل 2-3 مشخص است سختی با افزایش درصد کربن، به دلیل افزایش در مقدار آستنیت باقیمانده، کاهش خواهد یافت؛ اما اگر فولادهای‌‌‌ هایپریوتکتوید از منطقه دوفازی آستنیت – سمانتیت، کوئنچ شوند، ساختار نهایی فولاد از مارتنزیت – سمانتیت – آستنیتت باقیمانده تشکیل می‌شود. تحت این شرایط سختی این فولادها یکسان بوده و وابسته به درصد کربن نیست [2].

سنتز و ساخت قطعات از نانو ذرات زیرکونیا و محلول های جامد آن جهت استفاده …

انرژی از دیر باز به عنوان موتور محرک جوامع بشری شناخته شده است و با پیشرفت بشر بر اهمیت و تأثیر گذاری آن در زندگی بشر افزوده شده است. بر این اساس هیدروژن به عنوان یکی از سوختهای پاک یکی از بهترین گزینه ها جهت ایفای نقش حامل انرژی در این سیستم جدید ارائه انرژی می  باشد ]1[. بشردرآینده ای نه چندان دورعصر هیدروژن راتجربه خواهدکرد]1و2[. عمل تبدیل انرژی شیمیایی موجود در هیدروژن به انرژی الکتریکی توسط دستگاهی به نام پیل سوختی انجام می پذیرد]3[. پیل های سوختی در کاهش آلودگی محیط زیست نقش به سزایی را ایفا می کنند و به خاطر عدم به کارگیری قطعات  مکانیکی زیاد ایجاد آلودگی صوتی نیز نمی نمایند]3[. پیل های سوختی به عنوان یک منبع بسیار ایده آل انرژی برای استفاده های ساکن وغیر ساکن ، نظیر حمل ونقل و نیرو گاه ها می باشند .در این بین پیل های سوختی اکسید جامد (SOFCs) بدلیل مزایایی نظیر قیمت ارزانترمواد مورد استفاده درآنها، حساسیت کمتر به ناخالصی های گاز هیدروژن وکارایی بسیار بالاتر یکی از جذاب ترین انواع پیل های سوختی می باشد. این پیل های سوختی به دلیل اینکه هیدروژن ورودی به آنها نیاز به هیچ گونه تغییر و خالص سازی اولیه  ندارد، به شدت از نظر قیمت نسبت به سایر پیل های سوختی ارزان تر می باشند]4[. پیل های سوختی اکسید جامد از سه بخش آند و کاتد و الکترولیت تشکیل شده اند. اساس عملکرد یک پیل سوختی اکسید جامد شامل احیای یک اکسنده (O2) درکاتد و اکسایش یک سوخت (H2) در آند می باشد. در این پیل ها نیاز به یک الکترولیت هادی یون اکسیژن و پروتون، برای واکنشهای الکتروشیمیایی اکسایش و کاهش اکسیژن و هیدروژن، انجام شده درالکترودها می باشد]5[.

عکس مرتبط با محیط زیست

امروزه در پیل های سوختی اکسید جامد بطور گسترده از هیدروژن به عنوان سوخت استفاده می شود. هیدروژن از منابع مختلف مانند: گازطبیعی، گازهای سنتزی حاصل از تبخیر منابع کربنی و زغال وغیره بدست می آید. هیدروکربنها نیز بطور گسترده به عنوان سوخت این پیل ها رواج پیداکرده اند. سوختهای هیدروکربنی معمولا در دماهای بالای عملکرد پیل سوختی اکسید جامد ناپایدارند و برروی آند به هیدروژن و کربن تبدیل می شوند. سوختهای هیدروکربنی بطور معمول مقدارکمی سولفوربه همراه دارند. کربن حاصل از تجزیه هیدروکربنها و سولفور موجود درآنها مشکلاتی برای عملکردپیل  ایجاد می کنند. برای جلوگیری از نشست کربن در سطح آند معمولا مقداری بخاراضافه به همراه گاز استفاده می شود و همچنین تغیراتی نیز در ترکیبات موادآندداده میشود. برای جلوگیری از سمی شدن پیل توسط سولفور معمولا سوخت را سولفور زدایی می کنند]5[.

 

 در سالهای اخیر تحقیقات گسترده ای بر روی مواد، کاتالیزورها، علوم سطح و خواص الکتروشیمیایی آندها انجام شده است] 4[. آندهای

پروژه دانشگاهی

 مورد استفاده در پیل های سوختی اکسید جامد از مواد و تنوع وگستردگی فراوانی برخوردارند. و از روشهای ساخت و سنتزمختلفی برای سنتزپودر و ساخت این آندها استفاده می شود. دوویژگی برجسته آند این پیل ها برای انتخاب ماده مناسب برای آند برای کارکردمناسب، الف)رسانایی یونی، ب)رسانایی الکترونی می باشد. زیرکونیا به عنوان یک ماده که به طور ذاتی دارای نقص جای خالی در ساختارمی باشد، یکی ازبهترین گزینه ها برای استفاده درآند این پیل ها می باشد.

 

     در این تحقیق از سنتز هم رسوبی برای تهیه محلولهای جامد استفاده شد. این روش بدلیل تولید ترکیباتی همگن و با خلوص بسیار بالا ، از اهمیت بسیار زیادی برخوردار بوده و علاوه بر آن کنترل اندازه دانه نیز در این روش بسیار آسان است]12[. هنگامی که زیرکونیا در دماهای پایین به روش هم رسوبی سنتز می شود امکان پایداری فاز تتراگونال به PH و هیدرولیز کننده مورد استفاد،وابسته می شود. در این تحقیق به روش سنتز همرسوبی، 3 محلول جامد، الف)Al-Zr، ب)Al-Zr-Ni،
ج)Al-Zr-Ni-Cu تهیه و آماده سازی شد. این محلول های جامد به عنوان مواد جدید برای استفاده در آند پیل های اکسید جامد طراحی و آماده شدند. ارزان بودن، غیرسمی بودن، سنتزآسان، تکرارپذیری تولید از جمله مزایای این مواد است. یکی از موارد مهم برای تولید و ساخت آندها در پیل سوختی اکسیدجامد، متخلخل بودن این آندها می باشد. این آندها باید دارای تخلخل با اندازه و توزیع یکنواخت باشند. که به این منظور از موادی مانند کربن و مواد دیگری برای متخلخل سازی استفاده می کنند]13[. دراین تحقیق برای متخلخل سازی آند چند نوع مختلف تخلخل زای، ارزان  قیمت و مناسب در آند استفاده شد. که نهایتا منجر به به استفاده از  PEGبه عنوان تخلخل ساز مناسب شد.پس از سنتز و تهیه محلول های جامد، موادحاصل ابتدا در دمای 500 درجه سانتیگراد عملیات حرارتی شدند و سپس برای تعیین تثبیت فازی و زینترینگ نهایی در دماهای800 و1000 و1200 و14700 درجه سانتی گراد عملیات حرارتی شدند.پس ازآن پودرهای حاصل با دو روش تر و خشک با چند نوع تخلخل زا ترکیب و با روش پرس هیدرولیک یکطرفه شکل دهی شده و عملیات حرارتی نهایی در14700 درجه سانتیگراد بر روی آنها صورت گرفت. قطعات آندی که دارای تخلخل مناسب و توزیع و اندازه تخلخل یکنواخت و استحکام کافی بودند، انتخاب شده و چگالی آنها به روش ارشمیدس اندازه گیری شد.

 

در فصل دوم این پایانامه مفاهیمی در مورد نانو فناوری و نانو محلول جامدها ارائه گردیده است. در ادامه مفاهیم کلی و واکنشهای انجام شده در انواع پیل های سوختی شرح داده شده است.

 

سپس مفاهیم کلی و عمومی در موردآندهای پیل سوختی اکسید جامد، روشهای ساخت و مواد بکار برده شده در آنها، مورد بحث و بررسی قرارگرفته است. درفصل سوم ابتدا به مواد مورد استفاده در این پروژه پرداخته شده است. در ادامه روشهای انجام آزمایش(مواد و تجهیزات)ارائه داده شده و در بخش آخر دستگاهها و لوازم مورد استفاده جهت بررسی و خواص نمونه ها تشریح گردید. درفصل چهارم نتایج حاصل از آزمایشات و بحث های مربوطه ارائه گردیده است. فصل پنجم نتیجه گیری  کلی از این تحقیق رابیان می کند.

 

فصل دوم: مروری بر منابع مطالعاتی

 

1-2- فناوری نانو

 

فناوری نانو واژه ای است کلی به تمام فناوری های پیشرفته در عرصه کار با اندازه نانو اطلاق میشود معمولاً منظور از مقیاس نانو ابعادی در حدود1 تا 100نانومتر می باشد. در شکل2-1 اندازه های مختلف از1 متر تا 1 نانو متر نشان داده شده است. ریچارد فاینمن طی یک سخنرانی با عنوان ( فضای زیادی در سطوح پائین وجود دارد) ایده فناوری نانو را مطرح ساخت. وی این نظریه را ارائه داد که در آینده ای نزدیک می توانیم مولکول ها و اتم ها را به صورت مستقیم دستکاری کنیم. واژه فناوری نانو اولین بار توسط نوریوتاینگوچی استاد دانشگاه علوم توكیو در سال 1974 بر زبانها جاری شد. او این واژه را برای توصیف ساخت مواد دقیقی كه تلورانس ابعادی آنها در حد نانومتر می باشد به کاربرد، در سال 1984 این واژه توسط كی اریك دركسلر در کتابی تحت عنوان (موتور افرینش: آغاز دوران فناوری نانو) باز آفرینی و تعریف مجدد شد. وی این واژه را به شكل عمیق تری در رساله دكترای خود مورد بررسی قرار داده و بعدها آن را در کتابی تحت عنوان (نانو سیستم ها، ماشین های مولكولی چگونگی ساخت و محاسبات آنها) توسعه داد. نانو تکنولوژی در ترجمه لفظ به لفظ، به معنی تکنولوژی بسیارکوچک (نانو، به معنی بسیار بسیار کوچک، مقیاس10 به توان منفی 9 ) می باشد[131و167].

 

2-2- خواص نانو ذرات

 

در تكنولوژی نانو اولین اثر کاهش اندازه ذرات، افزایش سطح است. افزایش نسبت سطح به حجم نانو ذرات باعث می شود که اتم های واقع در سطح، اثر بسیار بیشتری نسبت به اتم های درون حجم ذرات، بر خواص فیزیکی ذرات داشته باشند. این ویژگی واکنش پذیری نانو ذرات را به شدت افزایش می دهد. زیرا تعداد مولکولها یا اتمهای موجود در سطح در مقایسه با تعداد اتمها یا مولکولهای موجود در توده نمونه بسیار زیاد است، به گونه ای که این ذرات به شدت تمایل به آگلومره یا کلوخه ای شدن دارند]132[. مساحت سطحی زیاد، عاملی کلیدی در کارکرد کاتالیزوها و ساختارهایی همچون الکترودها می باشد. به عنوان مثال با استفاده از این خاصیت می توان کارایی کاتالیزورهای شیمیایی را به نحو مؤثری بهبود بخشید و یا در تولید نانو کامپوزیت ها با استفاده از این ذرات، پیوندهای شیمیایی مستحکم تری بین ماده زمینه و ذرات برقرارکرده تا استحکام آن به شدت افزایش یابد]133[. افزایش سطح ذرات، فشار سطحی را کاهش داده و منجر به تغییر فاصله بین ذرات یا فاصله بین اتم های ذرات می شود تغییر در فاصله بین اتم های ذرات و نسبت سطح به حجم بالا در نانو ذرات، تأثیر متقابلی در خواص ماده دارد. تغییر در انرژی آزاد سطح، پتانسیل شیمیایی را تغییر می دهد. این امر در خواص ترمودینامیکی ماده (مثل نقطه ذوب) تأثیرگذاراست. به محض آنکه ذرات به اندازه کافی کوچک شوند، شروع به رفتار مکانیک کوانتومی می کنند. خواص نقاط کوانتومی مثالی از این دست است. نقاط کوانتومی بلورهایی در اندازه نانو می باشد که از خود نور ساطع می کنند. انتشار نور توسط این نقاط در تشخیص پزشکی و در کشاورزی و… کاربردهای فراوانی دارد. این نقاط گاهی اتم های مصنوعی نامیده می شوند چون الکترونهای آزاد آنها مشابه الکترونهای محبوس در اتمها، حالات گسسته و مجازی از انرژی را اشغال می کنند]132[.

مدل‌سازی عددی هیدرولیك جریان و آبشستگی در پایین‌دست جریان ترکیبی همزمان از روی سرریز و زیر دریچه

یكی از عمده‌ترین مشكلات سازه‌هایی از قبیل سرریزها، دریچه‌ها و حوضچه‌های آرامش كه در بالادست بسترهای فرسایش‌پذیر قرار دارند، آبشستگی در مجاورت سازه است كه علاوه­‌بر تأثیر مستقیم بر پایداری سازه، ممكن است باعث تغییر مشخصات جریان و در نتیجه تغییر در پارامترهای طراحی سازه شود. به دلیل پیچیدگی موضوع، اكثر محققین آن را به صورت آزمایشگاهی بررسی كرده­اند كه با وجود تمام دست­آوردهای مهمی كه تاكنون در زمینه آبشستگی موضعی حاصل گردیده است، هنوز هم شواهد زیادی از آبشستگی گسترده در پایاب دریچه‌ها، سرریزها، شیب‌شكن‌ها، كالورت‌ها و مجاورت پایه‌های پل دیده می‌شود كه می‌تواند پایداری این سازه­ها را با خطرات جدی مواجه كند.

 

پدیده آبشستگی زمانی اتفاق می‌افتد كه تنش برشی جریان آب عبوری از آبراهه، از میزان بحرانی شروع حركت ذرات بستر بیشتر شود. تحقیقات نشان داده است كه عوامل بسیار زیادی بر آبشستگی در پایین‌دست سازه تأثیرگذار هستند كه از جمله آن­ها می‌توان به اندازه و دانه‌بندی رسوبات، عمق پایاب، عدد فرود ذره، هندسه سازه و … اشاره كرد (کوتی و ین[1] (1976)، بالاچاندار[2] و همکاران (2000)، کلز[3] و همکاران (2001)، لیم و یو[4] (2002)، فروک[5] و همکاران (2006)، دی و سارکار[6] (2006) و ساراتی[7] و همکاران (2008)).

 

دریچه­ ها و سرریزها به طور گسترده به منظور کنترل، تنظیم جریان و تثبیت کف، در کانال­های باز مورد استفاده قرار می­گیرند. بر اثر جریان ناشی از جت عبوری از رو یا زیر سازه­ها، امکان ایجاد حفره آبشستگی در پایین­دست سازه­ها وجود دارد که ممکن است پایداری سازه را به خطر اندازد؛ بنابراین تعیین مشخصات حفره آبشستگی مورد توجه محققین هیدرولیک جریان قرار گرفته است.

 

به منظور افزایش بهره‌وری از سازه­های پرکاربرد سرریزها و دریچه­ها، می‌توان آن­ها را با هم ترکیب نمود به‌طوری‌که در یک زمان آب بتواند هم از روی سرریز و هم از زیر دریچه عبور نماید. با ترکیب سرریز و دریچه می‌توان دو مشکل عمده و اساسی رسوب‌گذاری در پشت سرریزها و تجمع رسوب و مواد زائد در پشت دریچه‌ها را رفع نمود. در سازه ترکیبی سرریز- دریچه، شرایط هیدرولیکی جدیدی حاکم خواهد شد که با شرایط هیدرولیکی هر کدام از این دو سازه به‌تنهایی متفاوت است.

 

2-1- تعاریف

 

1-2-1- سرریزها

 

یکی از سازه­های مهم هر سد را سرریزها تشکیل می­دهند که برای عبور آب اضافی و سیلاب از سراب به پایاب سدها، کنترل سطح آب، توزیع آب و اندازه­گیری دبی جریان در کانال­ها­ مورد­استفاده قرار می­گیرد. با توجه به حساس بودن کاری که سرریزها انجام می­دهند، باید سازه­ای قوی، مطمئن و با راندمان بالا انتخاب شود که هر لحظه بتواند برای بهره­برداری آمادگی داشته باشد.

 

معمولاً سرریزها را بر حسب مهم­ترین مشخصه آن­ها تقسیم­بندی می­كنند. این مشخصه می­تواند در رابطه با سازه كنترل و كانال تخلیه باشد. بر حسب این­كه سرریز مجهز به دریچه و یا فاقد آن باشد به ترتیب با نام سرریزهای كنترل­دار و یا سرریزهای بدون كنترل شناخته می­شوند.

 

2-2-1- دریچه ها

 

دریچه­ها سازه­هایی هستند که از فلزات، مواد پلاستیکی و شیمیایی و یا از چوب ساخته می­شوند. از دریچه­ها به منظور قطع و وصل و یا

پروژه دانشگاهی

 كنترل جریان در مجاری عبور آب استفاده می­شود و از لحاظ ساختمان به گونه­ای می­باشند كه در حالت بازشدگی كامل عضو مسدود كننده كاملاً از مسیر جریان خارج می­گردد.

 

دریچه ­ها در سدهای انحرافی و شبکه­های آبیاری و زهکشی کاربرد فراوان دارند. همچنین برای تخلیه آب مازاد کانال­ها، مخازن و پشت سدها به کار می­روند (نواک[1] و همکاران، 2004).

 

دریچه­ ها به صورت زیر دسته­بندی می­شوند:

 

بر اساس محل قرارگیری: دریچه­های سطحی و دریچه­های تحتانی. دریچه سطحی تحت فشار کم و دریچه تحتانی تحت فشار زیاد قرار می­گیرند.

 

بر اساس کاری که انجام می­دهند: دریچه­های اصلی، تعمیراتی و اضطراری. دریچه اصلی به طور دائم مورد بهره­برداری قرار می­گیرند. برای تعمیرات از دریچه تعمیراتی و در زمان حوادث از دریچه اضطراری استفاده می­شود.

 

بر اساس مصالح بدنه: دریچه­های فولادی، آلومینیومی، بتنی مسلح، چوبی و پلاستیکی. دریچه فولادی به خاطر استقامت زیاد به صورت وسیع مورد استفاده قرار می­گیرد.

 

بر اساس نوع بهره­برداری: دریچه­ های تنظیم کننده دبی و دریچه­های کنترل­کننده سطح آب

 

بر اساس مکانیزم حرکت: دریچه­ های خودکار، هیدرولیکی، مکانیکی، برقی و دستی. دریچه خودکار بر اساس نیروی شناوری و وزن دریچه و بدون دخالت انسان کار می­کند. دریچه هیدرولیکی بر اساس قانون پاسکال عمل می­نماید. دریچه برقی از دستگاه­های برقی، دریچه مکانیکی با استفاده از قانون نیرو و بازو و بالاخره دریچه دستی به صورت ساده با دست جابه­جا می­شوند.

 

بر اساس نوع حرکت: دریچه ­های چرخشی، غلطان، شناور و دریچه­هایی که در امتداد یا در جهت عمود بر جریان حرکت می­نمایند.

 

بر اساس انتقال فشار آب: دریچه­ ها ممکن است فشار را به طرفین یعنی به پایه­ های پل یا به تکیه­ گاه­ ها منتقل نمایند و یا ممکن است نیروی فشار آب بر کف منتقل شود و یا ممکن است نیروی فشار آب به هر دو یعنی هم تکیه­ گاه­ ها و هم بر کف منتقل شود.

 

3-2-1- سازه ترکیبی سریز – دریچه

 

تركیب سرریز – دریچه یكی از انواع سازه­های هیدرولیكی می­باشد كه در سال­های اخیر عمدتاً برای عبور سیال در مواردی كه سیال حاوی سرباره و رسوب به صورت همزمان می­باشد (مانند كانال عبور فاضلاب) بكار رفته است. سازه ترکیبی سرریز – دریچه با تقسیم دبی عبوری از بالا و پایین خود از انباشت سرباره و رسوب در پشت سازه جلوگیری می­كند. از دیگر كاربردهای عملی این تركیب، می­توان انواع سدهای تأخیری را نام برد. در سدهای تأخیری برای جلوگیری از انباشت رسوب در پشت سد كه منجر به كاهش حجم مفید مخزن می­گردد اقدام به تعبیه تخلیه­كننده­های تحتانی می­گردد. از طرف دیگر این نوع سدها به علت برآورد اهداف طراحی و عبور سیلاب­های محتمل به صورت روگذر نیز عمل می­كنند كه از این دو جهت، مدل تركیبی سرریز – دریچه ایده مناسبی برای تحلیل این نوع سدها می­باشد. اگرچه این نوع سازه دارای كاربرد فراوانی در سازه­های هیدرولیكی می­باشد.

 

جهت به حداقل رساندن مشكلات در سرریزها و دریچه‌ها و همچنین جهت بالا بردن مزایای آن­ها می‌توان از سازه تركیبی سرریز – دریچه استفاده كرد به طوری كه در یك زمان، جریان آب بتواند هم از روی سرریز و هم از زیر دریچه عبور نماید. این وسیله تركیبی می‌تواند مشكلات ناشی از فرسایش و رسوب­گذاری را مرتفع نماید (دهقانی و همكاران، 2010).

 

همچنین با این روش، رسوبات و مواد زائد در پشت سرریزها انباشته نمی‌‌‌شوند (ماخرک، 1985).

 

مشكلاتی را كه در اثر وجود مواد رسوبی یا شناور در آب انتقالی برای آبیاری حاصل می‌شود، می‌توان با استفاده از سازه تركیبی سرریز – دریچه به مقدار زیادی كاهش داده که امكان اندازه‌گیری دقیق‌تر و ساده‌تر را به همراه دارد ( اسماعیلی و همكاران، 1385).

 

سیستم سرریز – دریچه امکان عبور جریان را از پایین و بالای یک مانع افقی در قسمت میانی مجرا به طور همزمان فراهم نموده، بدین صورت که مواد قابل رسوب را در پشت دریچه به صورت زیرگذر و مواد شناور را به صورت روگذر سرریز عبور می­دهد (شکل 1- 1).

 

از این­رو تعیین شکل و حداکثر عمق آبشستگی در پایین­دست سرریز و دریچه ترکیبی به منظور تثبیت وضعیت بستر می­تواند مفید واقع شود.

 

[1] Novak

 

[1] Kuti &Yen

 

[2] Balachandar

 

[3] Kells

 

[4] Lim &Yu

 

[5] Faruque

 

[6] Dey & Sarkar

 

[7] Sarati

 
مداحی های محرم