مغز[1] چیست؟ کارکرد آن چگونه است؟ چگونه می توان به عملکرد مغز انسان نظر انداخت؟ متخصصین اعصاب، اعمال مناطق مختلف مغز را به کمک سیستمهای کامپیوتری مثل برش نگاری رایانه ای، تصویربرداری با تشدید مغناطیسی[2]، طیف بینی با تشدید مغناطیسی[3]، برش نگاری رایانه ای با گسیل فوتون منفرد[4]، نوار مغز[5] و یا اسکن پت[6] و … مورد بررسی قرار می دهند. اما آنچه که مورد سوال می باشد این است که تا چه اندازه این دستگاه ها ما را در جهت فهم دقیق رابطه میان مغز و رفتار، یاری می کنند؟ آیا یک حلقه قرمز رنگ در یک اسکن پت می تواند معرف خیالات باطل مبنی بر پارانویای بیمار باشد؟ یا یک الگوی الکتریکی خاص وجود دارد که شاخص و معرف هذیان بزرگ منشی در یک مانیک باشد؟ آیا این ماشینها می توانند علت و ماهیت توهمات را منعکس کنند؟ پس آنچه که مسلم است، این است که علی رغم همه ی پیشرفتهای صورت گرفته در علوم مغزی و اعصاب هنوز سبب شناسی و تفکیک بسیاری از اختلالات در پرده ای از ابهام می باشد. یکی از این موارد مناقشه آمیز و چالش برانگیز تشخیص و تمایز قائل شدن بین دسته ای از اختلالات سایکوتیک[7] مانند اسکیزوافکتیو، اسکیزوفرنیا[8] و اختلال دوقطبی[9] می باشد. اختلال اسكیزوافكتیو؛ اختلالی است كه همزمان هم علائم اختلال خلقی و هم علائم بیماری اسكیزوفرنیا را نشان می دهد؛ بطوری كه نمی توان در تشخیص، یكی از آنها را بطور جداگانه مطرح كرد ( سادوك[10]،٢٠١٠؛ دانر[11]، 2003) و علت را تشخیص داد. تنها در این زمینه چهار الگوی نظری ارائه شده است:
در مطالعاتی که برای کشف این احتمالات طراحی شده است، تاریخچه خانوادگی، شاخص های زیستی، پاسخ کوتاه مدت به درمان و فرجام دراز مدت بررسی شده است. در اکثر این بررسی ها بیماران دچار اختلال اسکیزوافکتیو گروهی همگن فرض شده اند. اما در مطالعات اخیر
دو نوع افسرده و دو قطبی اسکیزوافکتیو جداگانه بررسی می شوند(روزنهان[13] و سلیگمن[14]، 1388، کاپلان و سادوک، 1387). در DSM-IV-TR نیز طبقه بندی جداگانه ای برای این انواع در نظر گرفته شده است. برخی داده ها حاکی از آن است که ممکن است از نظر وراثتی به هم مرتبط باشند. در مطالعات انجام شده بر روی بستگان بیماران اسکیزوافکتیو، نتایج همسانی گزارش نشده است با این حال طبق ملاک های DSM-IV-TR، خطر بروز اسکیزوفرنی در میان بستگان مورد تحقیق اسکیزوافکتیو افزایش می یابد. بیماران اسکیزوافکتیو در کل و به عنوان یک گروه، اولاً پیش آگهی شان بهتر از بیماران مبتلا به اسکیزوفرنی و بدتر از بیماران دچار اختلالات خلقی است؛ دوماً در مقایسه با اسکیزوفرنی به لیتیوم جواب می دهند و اکثرشان سیر رو به تباهی نیز ندارند(کاپلان و سادوک، 1387) .
علاوه بر موارد فوق در پژوهش هایی نیز که بر روی سیستم عصبی و مغزی این دسته از بیماران سایکوتیک که علائم منفی و شناختی بارز و پایدار در آنها مشاهده می شود (گرانت[15]، ١٩٩٨ ) نشان می دهد که این علائم با ضایعات و ناهنجاریهای ساختاری مشهودی به خصوص در قطعه ی پیشانی همراه هستند (سادوک، 2003).
-ازطرفی با توجه به اینکه علائم منفی در بیماران سایکوتیک با ضایعه قطعه پیشانی همخوانی دارد(هاریسون ،٢٠٠٨) مطالعه ی این قسمت ضروری به نظر می رسد.قطعه پیشانی ناحیه ای از مغز است که نارسایی عصب – روانشناختی در آن بارزتر از نارسایی دیگر مناطق مغز، در بیماران شدید روانی است (سایکین و همکاران ٢٠٠٣).
همه ی شواهد فوق و مطالعاتی که بر روی خانواده و نقش وراثت در بررسی اختلال اسکیزوافکتیو انجام شده بر این فرض مبتنی بوده است که اسکیزوفرنی و اختلالات خلقی دو قلمرو کاملاً جداگانه اند (کاپلان و سادوک،1387). اما همچنان تشخیص و تفکیک این اختلالات در نگاه اول غیر ممکن و یا با ابهام صورت می گیرد، در این راستا پژوهش حاضر که ادغامی از علوم رفتاری و علم اعصاب می باشد؛ قصد دارد به مقایسه عملكرد عصب- روانشناختی(١) قطعه پیشانی(٢)بیماران اسكیزوافكتیو(٣) با بیماران اسکیزوفرنیا با علائم منفی و اختلال دو قطبی نوع یک و گروه بهنجار بپردازد.
نگرانیهای ناشی از کاهش سوختهای فسیلی، افزایش دمای کره زمین و مشکلات زیست محیطی، استفاده از منابع تولید پراکنده[1] مبتنی بر انرژیهای تجدید پذیر[2] را زمینه تحقیق بسیاری از محققان قرارداده است. با توجه به افزایش تقاضای مصرف و نفوذ روزافزون منابع تولید پراکنده و اتصال میکروگریدها[3] به شبکه قدرت، شبکههای قدرت روزبهروز بزرگتر و پیچیدهتر میشود. منابع تولید پراکنده و یا نیروگاههای مستقل برای بالا بردن ظرفیت سیستم به عنوان پشتیبان برای تامین بدون وقفه بارهای حساس محلی، به شبکه توزیع متصل میشوند[1]. از نگاه مصرف کننده تولید و انتقال انرژی الکتریکی به صورت دائم و بدون وقفه بسیار با اهمیت است شبکه توزیع و میکروگرید شامل عناصری از جمله ترانسفورماتور، خطوط انتقال، منابع تولید پراکنده و… هستند که در معرض خطا قرار میگیرند و باعث اختلال در شبکه و پایین آمدن کیفیت ولتاژ و توان سیستم میشود. به همین منظور وجود یک سیستم حفاظتی که به خوبی هماهنگ شده است، لازم است. این سیستم با عملکرد خودکار جهت جداسازی خطاها از شبکه در کمترین زمان جهت زمان برای حداقل کردن خسارت تنظیم میشود. در شبکه توزیع به طور معمول از رله اضافه جریان برای جداسازی محل خطا از شبکه استفاده میشود. با افزوده شدن منابع تولید پراکنده به شبکه توزیع سطح اندازه و جهت جریان اتصال کوتاه در خطوط شبکه تغییر میکند و در نتیجه، سیستم حفاظت در صورت رخ دادن خطا بدرستی عمل نمیکند. بعلاوه، حضور این نیروگاهها منجر به افزایش سطح جریان اتصال کوتاه شبکه میشود که از ماکزیمم جریان قابل تحمل بریکرهای موجود در شبکه بیشتر است. تعویض کامل بریکرهای موجود با بریکرهای با ظرفیت بالاتر عملی نیست زیرا علاوه بر قیمت بالای بریکرها، جایگزینی قطعات یدکی مشکل است و هزینه نسبتاً بالایی دارد و همچنین ممکن است سطح جریان اتصال کوتاه شبکه از ماکزیمم جریان قابل تحمل بریکرهای موجود در بازار بیشتر باشد.[2, 3]
با توجه به مشکلات ایجاد شده توسط منابع تولید پراکنده، برای نگهداری عملکرد سیستم قدرت در بالاترین درجه امنیت و قابلیت اطمینان[4] شبکه روشهای متعددی ارائه شده است که بهترین و ارزانترین روش، استفاده از محدود کننده جریان خطا[5]است که توانایی محدودکردن اولین پیک جریان اتصال کوتاه را دارد. این تجهیز دارای این پتانسیل میباشد که در صورتی که در مکانهای مناسب مورد استفاده قرار گیرد لزوم اضافه و یا تعوض کردن و یا تنظیم مجدد تجهیزات را به حداقل میرساند.
بنا به دلایل اقتصادی، سیاسی درخواست توان الکتریکی روز به روز رو به افزایش است. اتصال تولیدات پراکنده به سیستم توزیع به سرعت رو به گسترش است. این منابع تولید پراکنده در کنار مزیتهایشان ممکن است، تاثیرات منفی بر روی سیستم توزیع داشته باشند. [4] یکی از این آثار منفی، اتصال منابع تولید پراکنده، بر سیستم حفاظتی شبکههای توزیع میباشد. [5] بطورکلی مدارشکنها[6]، رلههای حفاظتی، بازبستها[7] و فیوزهایی[8] که برای یک سیستم توزیع بدون حضور منابع تولید پراکنده طراحی شدهاند، در هنگام حضور منابع تولید پراکنده بدلیل تغییر سطح جریان اتصال کوتاه بدرستی عمل نخواهند کرد[6, 7] و این موضوع باعث کاهش درجه ایمنی سیستم میشود. از طرف دیگر سیستم حفاظتی شامل اجزای زیادی است، که برای برطرف کردن خطا میبایستی بین آنها هماهنگی برقرار باشد. هماهنگسازی این اجزا در طول فرایند طراحی سیستم براساس محاسبات اتصال کوتاه انجام میگیرد. هنگام نصب منابع تولید پراکنده جریان خطا در سیستم افزایش مییابد، بنابراین پس از نصب منابع تولید پراکنده می بایستی بعضی از اجزای سیستم حفاظتی مجدداً تعویض و هماهنگ شوند. [3]
تحقیقات و مطالعات زیادی برای بر طرف کردن مشکلات ناشی از اتصال تولیدات پراکنده در شبکه صورت گرفته است. یکی از موثرترین روشها جهت بر طرف کردن مشکلات، استفاده از محدود کننده جریان خطا در شبکه میباشد. محققین تحقیقات زیادی در مورد انواع محدودکننده جریان خطا، اندازه، مکان این تجهیز در شبکه، تاثیرات محدود کننده جریان خطا بر روی ژنراتورها موجود در شبکه و … انجام دادهاند. بنابراین قرار گرفتن محدود کننده جریان خطا در شبکه به منظور نیل به اهداف زیر میباشد.
تاکنون روشهای مختلفی برای کاهش اثر منفی تولید پراکنده ارائه شده است، که در اینجا برخی از این روشها مرور میشود.
در روش ارائه شده در مرجع [8] اثرات منفی ایجاد شده پس از اتصال تولید پراکنده با جعبه ابزار محاسباتی SiGDist بررسی شده است. براساس نتایج بدستآمده محدودیتهای حاصل شده از اتصال تولید پراکنده مشخص میشود. با توجه به محدودیتهای حاصل شده میزان تغییرات لازم در تجهیزات سیستم حفاظت و هماهنگیهای حفاظتی براساس مکان نصب تولید پراکنده و ماکزیمم توان تولیدی این منابع برآورد میشود.
در [9] ظرفیت یک توربین بادی با در نظر گرفتن تنظیم ولتاژ و هماهنگی رلههای اضافه جریان به کمک فرمولهای پیشنهادی طی یک الگوریتم تکرار شونده تعیین شده است. در [10] حداکثر ظرفیت مجاز منبع تولید پراکنده با سه قید حداکثر و حداقل اندازه مجاز شینهای[11] شبکه پس از نصب منبع تولید پراکنده، بیشتر نشدن تلفات شبکه پس از نصب منبع تولید پراکنده نسبت به حالت مبنا و هماهنگی حفاظتی فیوز و ریکلوزر[12] با روشی شبیه به [9] بدست میآید.
در مرجع [11-13] پیشنهاد میشود، که اندازه منابع تولید پراکنده برای کاهش اثر منفی این منابع بر سیستم حفاظت کاهش داده شود. با کاهش توان تحویلی این منابع، جریان تولیدی این منابع در حالت اتصال کوتاه کاهش داده شده و اثر منفی این منابع بر سیستم حفاظت حداقل میشود. در صورتیکه منابع تولید پراکنده بسرعت و قبل از عملکرد تجهیزات حفاظتی از سیستم جدا شده و پس از یک تاخیر زمانی دوباره وارد مدار شوند، اثر منابع تولید پراکنده بر سیستم حفاظت حداقل میشود [14].
با توجه به تغییر سطح جریان اتصال کوتاه در اثر اضافه شدن منبع تولید پراکنده و بر هم خوردن حفاظت سیستم توزیع، استفاده از سیستم حفاظت تطبیقی [5] و استفاده از رلههای میکروپروسسوری [15] از روشهای پیشنهاد شده برای حل این مشکل میباشد. در مرجع [16] روشی مبتنی بر عملکرد تولید پراکنده در زمان خطا ارائه میشود. ضمن اینکه در این الگوریتم فرض میشود، که تولید پراکنده در حالت جزیرهای نمیباشد. برای پیادهسازی این طرح پیشنهادی منبع تولید پراکنده میبایستی به دو فیدر متصل باشد و در حالت عملکردی حلقه عمل نماید. هنگامی که خطایی در سیستم اتفاق میافتد، منبع تولید پراکنده از شاخه آسیب دیده جدا شده و از طریق شاخه دیگرش سیستم را تغذیه مینماید.
در مرجع [17] روشی جدید بر پایه تکنولوژی عامل ارائه میگردد. در این روش سیستمهای مخابراتی نقش مهمی را در جهت فراهم کردن اطلاعات لازم برای هماهنگی حفاظتی رلهها و تنظیمات آنها برعهده دارند.
همانگونه که مشخص است، روشهای ارائه شده در مراجع [15-17] روشهایی پیچیده و مستلزم تنظیمات جدید برای رلهها و استفاده از مدارشکنهای جدید و رلههای میکروپروسسوری و تجهیزات پیچیده مخابراتی میباشند. بنابراین کاملاً مشخص است که هزینه پیادهسازی و اجرای این روشها گران میباشد. با اجرای روشهای [8-14] امکان استفاده از تمام توان منبع تولید پراکنده وجود ندارد و بنابراین این روشها نیز مفید نمی باشند. میبایستی به این نکته توجه کرد، که با قطع منابع تولید پراکنده از سیستم توزیع، مشکلاتی نظیر ناپایداری ولتاژ و فلیکر پدیدار میشوند. بنابراین روشهای ارائه شده دارای مشکلات عمدهای میباشد و نیازمند مطالعات بیشتری است.
یکی از روشهای ارائه شده در سالهای اخیر، بکارگیری محدود کننده جریان خطا (FCL) برای کاهش اثر منفی منابع تولید پراکنده بر حفاظت سیستم توزیع میباشد [18-20] با اجرای این روش تعداد تجهیزات حفاظتی که پس از نصب منابع تولید پراکنده نیاز به تعویض دارند، حداقل میشود. بنابراین پیادهسازی این روش مستلزم هزینه بالا و الگوریتمهای حفاظتی پیچیده نمیباشد.
[1] Dispersed generation (DG)
[2] Renewable energy
[3] Microgrid
[4] Reliability
[5] Fault current limiter
[6] Breaker
[7] Recloser
[8] Fuse
[9] Voltage sag
[10]- Simulator of Distribution Systems with Distributed Generation
[11] – bus
[12] – Fuse and Recloser
[13]- Agent Technology
[14] – Fault Current Limiter
***ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است***
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است
امروزه توجه شرکتهای برق و مشترکین آنها به شکل روزافزونی به مسئله کیفیت توان معطوف شده است. واژه کیفیت توان در کشورهای صنعتی و در صنعت برق کاربرد فراوانی پیدا کرده است. مبحث فوق تعداد بسیار زیادی از اعوجاجهای موجود در شبکه برق را پوشش میدهد. موضوعاتی که تحت مبحث کیفیت توان قرار میگیرند لزوماً مفاهیم تازهای نیستند، لیکن آنچه جدید است تلاش مهندسین برای جمعآوری این مطالب و قرار دادن آنها در الگوهای مشخص میباشد.
عنوان کیفیت توان و یا کیفیت برق به صورت یک مفهوم کلی برای تمام اغتشاشات موجود در شبکههای توزیع میباشد. مهندسین برق- قدرت، کیفیت توان را باید به عنوان ضرورتی مهم مورد توجه خود قرار دهند. ضرورتی که ولتاژ، جریان و فرکانس توان تغذیهکننده، یک مصرفکننده را تحت تأثیر خود قرار میدهد. مشکلات کیفیت توان زمانی رخ میدهد که ولتاژ متناوب منبع قدرت 50 یا 60 هرتز از حالت سینوسی خارج شود و تغییر شکل دهد [1].
کیفیت توان از دو جنبه متفاوت بسته به اینکه ما مصرفکننده و یا تولیدکننده توان هستیم میتواند تعریف شود. آقای Gerry Heyolt در «کیفیت توان الکتریکی» کیفیت توان را اینگونه تعریف میکند: «اندازهگیری، آنالیز و اصلاح ولتاژ باس برای نگهداشتن آن در حالت سینوسی در ولتاژ و فرکانس نامی». Reger Dugan در «کیفیت توان سیستمهای الکتریکی» کیفیت توان را اینگونه تعریف میکند: «هر گونه تغییر شکل در ولتاژ، جریان و فرکانس که باعث نقص و کارکرد ناصحیح تجهیزات مصرفکننده میشود». تعاریف متنوعی از کیفیت توان وجود دارد [2]:
کیفیت ولتاژ مهمترین بخش از کیفیت توان محسوب میگردد. شرکتهای برق کیفیت توان را مترادف با قابلیت اطمینان تعریف میکنند درحالیکه سازندگان تجهیزات الکتریکی، کیفیت توان را به صورت کارکرد مناسب دستگاهها بر اساس مشخصات منبع تغذیه تعریف میکنند. این تعریفمیتواند برای سازندگان مختلف متفاوت باشد. مفهومی که در این نوشتار مد نظر است بدین گونه میباشد:
« هر گونه مشکلی که سبب تغییر در ولتاژ، جریان یا فرکانس گردد و موجب خرابی و عملکرد نادرست تجهیزات مصرفکننده شود. »
[1] Dynamic voltage Restorer
[2] Modular Multilevel Cascade Converter
[3] Total Harmonic Distortion
[4] Pulse Width Modulation
[5] Voltage Sag/Swell
[6] Custom Power System
***ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است***
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است
یکی از طبیعیترین گروههایی که میتواند نیازهای انسان را ارضا کند خانواده است. وظیفهی خانواده مراقبت از فرزندان و تربیت آنها، برقراری ارتباطات سالم اعضا با هم و کمک به استقلال کودکان است، حتی اگر کودک کمتوان ذهنی[1]، نابینا[2]، یا ناشنوا[3] باشد. کمتوان ذهنی یک وضعیت و حالت خاص ذهنی است که در اثر شرایط مختلف قبل از تولد و یا پس از تولد کودک پدید میآید (میکائیلی، 138). بی تردید تولد و حضور كودكی با كم توانی ذهنی در هر خانوادهای میتواند رویدادی نامطلوب و چالشزا تلقی شود كه احتمالاً تنیدگی، سرخوردگی، احساس غم و ناامیدی را به دنبال خواهد داشت. شواهد متعددی وجود داردكه نشان میدهند والدین كودكان دارای مشكلات هوشی، به احتمال بیشتری با مشكلات هیجانی، اقتصادی و اجتماعی كه غالباً ماهیت محدود كننده، مخرب و فراگیر دارند، مواجه میشوند (مانند خمیس[4]، 2007). در چنین موقعیتی گرچه همهی اعضای خانواده وكاركرد آن، آسیب میبیند(هرینگ[5] وهمكاران، 2006) مادران به علت داشتن نقش سنتی “مراقب”، مسئولیتهایی بیشتری در قبال فرزند ناتوان خود به عهده میگیرند كه در نتیجه، با مشكلات روانی بیشتری مواجه میشوند. فرض بر این است كه مشكلات مربوط به مراقبت از فرزند مشكلدار، والدین، به ویژه مادر را در معرض خطر ابتلا به مشكلات مربوط به سلامت روانی قرار میدهد (اولسون و هوآنگ، 2001؛ مک کانکی و همکاران[6]، 2007). مادر، نخستین شخصی است كه به طور مستقیم با كودك ارتباط برقرار میكند.
رویارویی مادر با فرزند كمتوان ذهنی، نیاز كودك به مراقبت دایمی، اهمیت فراهم ساختن شرایط ویژهی رشد، تجربهی تنش والدین ناشی از وجود رفتارهای آیینی، مشكلات زبانی، قشقرق و فقدان مهارت مراقبت از خود در این گروه از كودكان، همگی زمینه را برای تضعیف كاركرد طبیعی مادر فراهم مینمایند. وجود چنین مشكلاتی افزایش میانگین اختلالات روانی در مادران كودكان استثنایی و به ویژه مادران دارای كودك كم توان ذهنی را در مقایسه با مادران كودكان عادی در پی خواهد داشت. هم چنین داشتن توقعات و انتظارات دور از توانایی كودكان و برآورده نشدن آنها موجب ناكامی والدین میشود.
تولد یك كودك كمتوان ذهنی در مادرانی كه به مدت 9 ماه بارداری، انتظار یك كودك سالم و با ویژگیهای طبیعی را داشتهاند موجبات احساس گناه و تقصیر، ناكامی و محرومیت ناشی از طبیعی نبودن كودك را در مادر فراهم می كند كه بالطبع غم، اندوه و افسردگی را به دنبال خواهد داشت. در مجموع، چنین شرایطی میتواند سبب گوشهگیری، عدم علاقه به برقراری رابطه با محیط، احساس خودكم بینی و بی ارزشی در مادر شود و پیامدهای منفی همچون اضطراب، پرخاشگری (نریمانی و همکاران، 2007)، حرمت به خود پایین (محمدی و دادخواه، 2001) و افسردگی شدید (لاجوردی، 1992) را در مادران به دنبال داشته باشد و سلامت آنها را به خطر اندازد.یكی از مهم ترین منابع زمینه ساز این گروه از مشكلات روان -شناختی از دست دادن امید به زندگی و نداشتن رضایت زناشویی است (شمس اسفندآبادی، 2007).
ای از فصل و نتایج قابل استنتاج از آن فصل ارائه میشود و علاوه بر آن، در فصل آخر پایاننامه، نتیجهگیری کلّی از پژوهشهای صورت گرفته در این پایاننامه انجام میشود و در ادامهی نتیجهگیری، یک سری پیشنهادات در قالب کارهای آینده[34] ارائه میشود تا مسیر تکامل و بهبود هرچه بیشتر مدلهای ارائه شده در این پایاننامه را نشان دهند.
فصل دوم
تاریخچهی کارهای انجام شده
انجام تعمیرات در هر سیستمی منجر به افزایش طول عمر مفید داراییها، کاهش هزینههای سرمایهگذاری، افزایش قابلیت اطمینان و کاهش خطاهای سیستم خواهد شد. با توسعهی تکنولوژی و وابستگی روز افزون بشر به سیستمهایی که روز به روز در حال پیچیدهتر شدن هستند، نیازهای قابلیت اطمینان و دسترسیپذیری رشد چشمگیری کرده است و این در حالی است که منابعِ در دسترس، محدودتر، و هزینههای تعمیرات بیشتر از قبل شدهاند. مسائلی از این دست باعث شده است که برای حفظ قابلیت اطمینان سیستم نیاز به ابزارهای جدید تصمیمگیری و نیز تکنیکهای جدید برای زمانبندی تعمیرات سیستم بیش از پیش حس شود.
در منـابع مختلف، دستهبندیهـای متفاوتی مبتنی بر راهبردهای تعمیرات صـورت گرفته است [2] و [18]–[20] که یکی از مهمترین دستهبندیهای صورت گرفته به صورت زیر است [19] و [20]:
به طور کلّی، نیاز صنایع به تعمیرات و نگهداری روز به روز در حال افزایش است که صنعت برق نیز از این رویه مستثنا نیست. صنعت برق نیز که از چهار بخش تولید، انتقال، توزیع و مصرفکنندگان تشکیل شده است، در هر چهار بخش، نیاز به تعمیرات و نگهداری صحیح و به موقع دارد. در سیستم قدرت نیز تمام راهبردهای بیان شده برای اجرای تعمیرات قابل اجرا هستند و گاه ترکیبی از روشهای مختلف برای اتّخاذ بهترین راهبرد تعمیرات به کار گرفته میشود [19]. در محیط سنّتی صنعت برق، اپراتور شبکه به صورت متمرکز و با هدف حفظ قابلیت اطمینان شبکه، زمانبندی مربوط به تعمیرات بخشهای تولید و انتقال سیستم را انجام میدهد و برنامهی زمانبندی تعمیرات را به واحدهای تولید و خطوط انتقال اعلام میکند. با تجدیدساختار صنعت برق، پیشنهاد زمان تعمیرات مربوط به بخشهای مختلف سیستم به مالکان بخشها واگذار میشود و بهرهبردار مستقل سیستم مسئول نظارت و هماهنگی زمان انجام تعمیرات میباشد.
در روند زمانبندی تعمیرات سیستم قدرت با هدف حفظ قابلیت اطمینان، تنها پیشامدهایی که در خود سیستم رخ میدهند در نظر گرفته میشوند. این پیشامدها شامل مواردی همچون خروج خطوط انتقال، خروج واحدهای تولید و خروج بارهای سیستم میشود. از سوی دیگر، براساس آمار منتشر شده در خصوص حملات صورت گرفته به سیستم قدرت به نظر میرسد که نمیتوان از اثر عواملی که از خارج از سیستم قدرت نشأت میگیرند چشمپوشی نمود. بنابراین، لحاظ کردن قید آسیبپذیری سیستم قدرت در روند زمانبندی تعمیرات این سیستم ضروری به نظر میرسد.
در ادامهی این فصل، ابتدا خواهیم داشت بر مهمترین پژوهشهای صورت گرفته در زمینهی تعمیرات سیستم قدرت، و پس از آن به
بررسی کارهای صورت گرفته در زمینهی مدلسازی و ارزیابی آسیبپذیری سیستم قدرت خواهیم پرداخت.
[1]. Blackout
[3]. Corrective
[4]. Coordinated Maintenance
[5]. Conejo
[6]. Iterative
[7]. Pandzic
[8]. Transmission System Operator
[9]. Social Welfare
[10]. Wu
[11]. Security-Constrained
[12]. Latify
[13]. Gas Network Operator
[14]. Independent Market Operator
[15]. Independent System Operator
[16]. Intentional
[17]. Memorial Institute for the Prevention of Terrorism
[18]. Vulnerability
[19]. Salmeron
[20]. Arroyo
[21]. Motto
[22]. Chen
[23]. Attacker
[24]. Supervisory Control And Data Acquisition
[25]. Time-Phased
[26]. Strong Duality Theorem
[27]. Mixed-Integer Linear Programming
[28]. Vulnerability-Constrained Transmission Maintenance Scheduling
[29]. Independent System Operator
[30]. Modified WaW
[31]. Genetic Algorithm
[32]. Global Optimum Solution
[33]. Independent System Operator
[34]. Future Works
[35]. Reliability
[36]. Availability
[37]. Corrective
[38]. Preventive
[39]. Condition-based
[40]. Predictive
[41]. Vulnerability
***ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است***
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است