1-1- معرفی
1-1-1- مسائل مستقیم و معکوس
تقریباً هر مسالهای که در آن فرض و حکم وجود داشته باشد میتوان با جابجایی فرض و حکم تبدیل به مسالهی جدیدی کرد. در این حالت مساله اول را مستقیم و دومی را معکوس مینامیم. به عنوان مثال اگر از پشت پنجره اتاق خود به بیرون بنگریم و مشاهده کنیم که باران در حال باریدن است از خود میپرسیم علت این بارندگی چیست؟ جواب بدیهی است؛ ابرهای بارانزایی که در آسمان هست دلیل بارش است. اما مساله معکوس چگونه بیان میشود؟ اکنون آسمان ابری است. در این حالت آیا بارش خواهیم داشت؟ بهسادگی قابل مشاهده است که مساله دومی تشخیص سختتری دارد و حل آن نیازمند داشتن اطلاعات بیشتری است. درعینحال جواب این سوال بسیار پرکاربردتر و هیجانانگیزتر است. میتوان سوال معکوس را سختتر و پرکاربردتر نیز مطرح کرد: آیا دو روز بعد بارش وجود خواهد داشت؟ تقریباً هیچ شخصی را نمیتوان سراغ داشت که جواب این سوال برای او مهم نباشد. در بسیاری از موارد جواب این سوال با درآمد مالی افراد ارتباط مستقیم دارد. به عنوان مثال کشاورزان و فعالان در زمینه حمل و نقل زمینی و دریایی و هوایی بررسی پیشبینی وضع هوا را در متن برنامه روزانه و هفتگی خود قرار میدهند. بنابراین میبینیم که مساله معکوس در این مورد بسیار پرکاربردتر است. در اکثر موارد یافتن پاسخ مساله معکوس دشوارتر است. ولی بهقدری پرکاربرد است که به صورت جدی در دستور کار محققان قرار میگیرد.
1-1-2- مسائل خوش رفتار و بدرفتار
به طور کلی هر مساله ای که سه ویژگی زیر را داشته باشد خوش رفتار نامیده می شود:
- مساله دارای جواب باشد(وجود)
- حداکثر یک جواب برای مساله وجود داشته باشد(یکتایی)
- جواب به طور پیوسته با تغییر داده تغییر کند(پایداری)
تعریف ریاضی سه مورد بالا در مورد تابع خوش رفتار به این قرار است:
تعریف: فرض کنیم و فضاهای نرمال باشند و یک نگاشت(خطی یا غیر خطی) باشد به طوری که داشته باشیم . معادلهی در صورتی خوش رفتار است که سه ویژگی زیر را داشته باشد:
- به ازای هر حداقل یک وجود داشته باشد به طوری که (وجود)
- به ازای هر حداکثر یک وجود داشته باشد به طوری که (یکتایی)
- به ازای هر دنبالهی اگر با ، در آن صورت (پایداری)
هر مسالهای که خوشرفتار نباشد(حداقل یکی از سه ویژگی بالا را نداشته باشد) بدرفتار نامیده میشود.
مهمترین دغدغه در حل مسائل معکوس مورد سوم یا همان مساله پایداری است. در همین مثال حرکت ابرها و بارش باران که در بخش اول بیان شد، فرض کنیم که با مشاهده نقشههای هواشناسی و مخابره کشورهای اطراف به این نتیجه برسیم که مثلاً به علت عبور سامانه ابری از غرب به شرق، سه روز دیگر در تهران بارندگی خواهیم داشت، در این حالت وزش بادی از شمال به جنوب که پیشبینی آن صورت نگرفته است و یا اینکه غیر قابل پیشبینی است و جابجایی ابرها به شهر دیگری مانند اصفهان نتیجهای که دربر خواهد داشت بارش باران در این شهر است. در این صورت تغییر کوچک در داده ورودی منجر به تغییر اساسی در خروجی شده است. بنابراین در حل مسائل معکوس باید به پایداری یا پایدارسازی مساله توجه ویژه داشته باشیم.
1-2- مسائل معکوس در مغناطیس
در حوزه الکترومغناطیس نیز میتوان مسائل مستقیم و معکوس را متصور بود. اغلب در الکترومغناطیس به دلیل کاربرد بسیار گسترده، مسائل معکوس در حوزه پراکندگی بررسی و طبقهبندی میشوند. به این صورت که در مساله مستقیم میدانی را به محیطی میتابانیم. به طوری که جنس و موقعیت جسم درون محیط برای ما مشخص است. در این صورت محاسبه میدان پراکندگی[14] مطلوب مساله است. اما در حالت معکوس میدانی را با دامنه و فاز مشخص به محیطی میتابانیم و میدانهای پراکنده شده را جمعآوری میکنیم. در این صورت مطلوب ما شناسایی جنس و موقعیت پراکنده کنندههای داخل محیط است. بیایید سه مورد بدرفتاری را درمورد مساله معکوس بررسی کنیم. با این فرض که میدانیم جنس جسم پراکنده کننده فلز است و ما به دنبال موقعیت آن هستیم.
وجود جواب: ممکن است میدانی که آنتن گیرنده دریافت میکند بهقدری تغییر کرده باشد که مقداری که نشان میدهد ناشی از هیچ نوع جسم پراکنده کنندهی فلزی نباشد.
یکتایی جواب: در صورتی که مشاهدات محدود باشد، مثلاً تعداد آنتن گیرنده کم باشد یا به طور 360درجه نتوان میدانهای برگشتی و عبوری را در حالت دوبعدی دریافت کرد، در این حالت ممکن است بازهم به علت دریافت دادههای نویزی یا ناصحیح و البته محدود به جوابی برسیم که ناشی از دو یا چند نوع جسم است.
ناپایداری: فرض کنید که میدانی که یک آنتن گیرنده دریافت میکند برابر یا نزدیک صفر باشد و میدان بقیه نقاط تغییر اندازه پیوسته و
آرام حول مقدار 10ولتبرمتر داشته باشند. به عنوان مثال دلیل این باشد که دو موج با دامنه نزدیک به هم و اختلاف فاز 180درجه قبل از برخورد به آنتن گیرنده برهم اثر کرده و اثر همدیگر را در موقعیت آن آنتن خنثی کرده باشند. در این صورت با اندکی جابجایی آنتن به اختلاف قابل توجه میرسیم. این حالت نمونهای از ناپایداری در حوزه دریافت عملی آن است.
1-3- مشکلات حل مسائل پراکندگی معکوس
یکی از مشکلات اساسی در این مسائل، غیر یکتا بودن آنهاست. مثلاً میدانهای محوشونده ناشی از محیط با تلفات و یا قسمتهای با ابعاد بسیار کوچک، قابل شناسایی نخواهد بود. مشکلات دیگری را میتوان نام برد از جمله:
- از دست دادن داده: به علت محدود بودن فضا و تأثیر امواج پراکنده شده بر هم، یا اطلاعات تکراری در اندازهگیری داده
- دادهی نویزی: دادهی گرفته شده در آنتن گیرنده آغشته به نویز تصادفی خواهد بود.
- دادهی غیرقابل مشاهده: یعنی اینکه حل مسئلهی بهینهسازی، منجر به اطلاعات غیر فیزیکی میشود. به عبارت دیگر اطلاعاتی که از طریق مدل مستقیم قابل مدلسازی نباشد.
- روش غیر دقیق: روش های بهینه سازی ممکن است منجر به ناپایداری شود.
1-4- کاربردهای پراکندگی و پراکندگی معکوس
پراکندگی امواج صوتی و مغناطیسی نقش اساسی در علوم کاربردی ایفا می کند. پارهای ازموارد استفادهی آن به قرار زیر است:
- عکسبرداری از بدن بیماران برای مصارف پزشکی: مانند استفاده از امواج مغناطیسی برای تشخیص سرطان مغز استخوان در افراد
- عکسبرداری زیر سطحی: برای کاربردهایی چون مینزدایی، اکتشاف نفت، تحقیقات باستان شناسی و…
- کاربردهای راداری: شناسایی تعداد، شکل و ابعاد اجسام متحرک همچون هواپیما، کشتی و…
- انجام تستهای غیر مخرب مانند تشخیص ترکخوردگی داخل اجسام، تشخیص حضور مواد خطرناک مثلاٌ قابل احتراق در داخل اجسام و…
1-5- روش های کلی حل مسائل معکوس
بسته به نیازی که در حل مسئله معکوس وجود دارد میتوان صورت سوال را تنظیم کرد. مثلاً در تعیین میزان فلز به کار رفته داخل یک بلوک بتونی قطعاً جنس برای ما مهم نیست و چیزی که اهمیت دارد شکل و موقعیت فلزات داخل بتون است. یا در تشخیص ترکیدگی لوله در آزمایشهای غیر مخرب فقط شکل داخلی برای ما اهمیت دارد که ببینیم آیا ترکی وجود دارد یا خیر.
1-5-1- روش های بازسازی کیفی
همانطور که از اسمش بر میآید با عدد و رقم کاری ندارد و کیفیت جسم را مشخص میکند. یعنی موقعیت و شکل کلی اجسام را مشخص میکند. روشهایی مانند روش نمونهبرداری خطی[15]، روش تنظیم سطح، معکوسسازی زمانی[16] و… از جمله این روشها هستند که فرایند آنها شناسایی موقعیت و شکل کلی اجسام است و در دسته روشهای کیفی[17] شناسایی جسم قرار میگیرند.
1-5-2- روش های بازسازی کمی
روش بازسازی کمی جنس جسم را مشخص میکند. پارامترهایی از قبیل به کمک ایندسته از روشها شناسایی میشوند. از جمله مهمترین روشهای پراکندگی معکوس[18] که در این شاخه جای میگیرند روشهای برمبنای بهینهسازی است. به این شکل که تابعی تعریف میشود که بهینه کردن آن منجر به شناسایی مقادیر در محیط مطالعه میشوند. روشهای متنوعی در زمینه بهینهسازی وجود دارد. از جمله میتوان به الگوریتم ژنتیک[19]، روش تکامل تفاضلی[20]، روش هجوم ذرات[21] و جستوجوهای هارمونی اشاره کرد.
[1] optimization
[2] Cost function
[3] Level set method
[4] Deformation velocity
[5] Hamilton-jacobi equation
[6] Local minima
[7] Frequency hopping
[8] Computational domain
[9] Well-posedness
[10] existence
[11] uniqueness
[12] stability
[13] Ill-posedness
[14] Scattered field
[15] Linear sampling method(LSM)
[16] Time reversal method
[17] Qualitative methods
[18] Inverse scattering
[19] Genetic algorithm
[20] Differential evolution
[21] Particle swarm optimization
***ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است***
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است
فرم در حال بارگذاری ...